Metamath Proof Explorer


Theorem disjprsn

Description: The disjoint intersection of an unordered pair and a singleton. (Contributed by AV, 23-Jan-2021)

Ref Expression
Assertion disjprsn A C B C A B C =

Proof

Step Hyp Ref Expression
1 dfsn2 C = C C
2 1 ineq2i A B C = A B C C
3 disjpr2 A C B C A C B C A B C C =
4 3 anidms A C B C A B C C =
5 2 4 eqtrid A C B C A B C =