Metamath Proof Explorer


Theorem disjrdx

Description: Re-index a disjunct collection statement. (Contributed by Thierry Arnoux, 7-Apr-2017)

Ref Expression
Hypotheses disjrdx.1 φ F : A 1-1 onto C
disjrdx.2 φ y = F x D = B
Assertion disjrdx φ Disj x A B Disj y C D

Proof

Step Hyp Ref Expression
1 disjrdx.1 φ F : A 1-1 onto C
2 disjrdx.2 φ y = F x D = B
3 f1of F : A 1-1 onto C F : A C
4 1 3 syl φ F : A C
5 4 ffvelrnda φ x A F x C
6 f1ofveu F : A 1-1 onto C y C ∃! x A F x = y
7 1 6 sylan φ y C ∃! x A F x = y
8 eqcom F x = y y = F x
9 8 reubii ∃! x A F x = y ∃! x A y = F x
10 7 9 sylib φ y C ∃! x A y = F x
11 2 eleq2d φ y = F x z D z B
12 5 10 11 rmoxfrd φ * y C z D * x A z B
13 12 bicomd φ * x A z B * y C z D
14 13 albidv φ z * x A z B z * y C z D
15 df-disj Disj x A B z * x A z B
16 df-disj Disj y C D z * y C z D
17 14 15 16 3bitr4g φ Disj x A B Disj y C D