Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
General Set Theory
Disjointness - misc additions
disjrdx
Next ⟩
disjex
Metamath Proof Explorer
Ascii
Unicode
Theorem
disjrdx
Description:
Re-index a disjunct collection statement.
(Contributed by
Thierry Arnoux
, 7-Apr-2017)
Ref
Expression
Hypotheses
disjrdx.1
⊢
φ
→
F
:
A
⟶
1-1 onto
C
disjrdx.2
⊢
φ
∧
y
=
F
⁡
x
→
D
=
B
Assertion
disjrdx
⊢
φ
→
Disj
x
∈
A
B
↔
Disj
y
∈
C
D
Proof
Step
Hyp
Ref
Expression
1
disjrdx.1
⊢
φ
→
F
:
A
⟶
1-1 onto
C
2
disjrdx.2
⊢
φ
∧
y
=
F
⁡
x
→
D
=
B
3
f1of
⊢
F
:
A
⟶
1-1 onto
C
→
F
:
A
⟶
C
4
1
3
syl
⊢
φ
→
F
:
A
⟶
C
5
4
ffvelrnda
⊢
φ
∧
x
∈
A
→
F
⁡
x
∈
C
6
f1ofveu
⊢
F
:
A
⟶
1-1 onto
C
∧
y
∈
C
→
∃!
x
∈
A
F
⁡
x
=
y
7
1
6
sylan
⊢
φ
∧
y
∈
C
→
∃!
x
∈
A
F
⁡
x
=
y
8
eqcom
⊢
F
⁡
x
=
y
↔
y
=
F
⁡
x
9
8
reubii
⊢
∃!
x
∈
A
F
⁡
x
=
y
↔
∃!
x
∈
A
y
=
F
⁡
x
10
7
9
sylib
⊢
φ
∧
y
∈
C
→
∃!
x
∈
A
y
=
F
⁡
x
11
2
eleq2d
⊢
φ
∧
y
=
F
⁡
x
→
z
∈
D
↔
z
∈
B
12
5
10
11
rmoxfrd
⊢
φ
→
∃
*
y
∈
C
z
∈
D
↔
∃
*
x
∈
A
z
∈
B
13
12
bicomd
⊢
φ
→
∃
*
x
∈
A
z
∈
B
↔
∃
*
y
∈
C
z
∈
D
14
13
albidv
⊢
φ
→
∀
z
∃
*
x
∈
A
z
∈
B
↔
∀
z
∃
*
y
∈
C
z
∈
D
15
df-disj
⊢
Disj
x
∈
A
B
↔
∀
z
∃
*
x
∈
A
z
∈
B
16
df-disj
⊢
Disj
y
∈
C
D
↔
∀
z
∃
*
y
∈
C
z
∈
D
17
14
15
16
3bitr4g
⊢
φ
→
Disj
x
∈
A
B
↔
Disj
y
∈
C
D