Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Disjoints vs. converse functions
disjres
Next ⟩
eldisjn0elb
Metamath Proof Explorer
Ascii
Unicode
Theorem
disjres
Description:
Disjoint restriction.
(Contributed by
Peter Mazsa
, 25-Aug-2023)
Ref
Expression
Assertion
disjres
⊢
Rel
⁡
R
→
Disj
R
↾
A
↔
∀
u
∈
A
∀
v
∈
A
u
=
v
∨
u
R
∩
v
R
=
∅
Proof
Step
Hyp
Ref
Expression
1
relres
⊢
Rel
⁡
R
↾
A
2
dfdisjALTV4
⊢
Disj
R
↾
A
↔
∀
x
∃
*
u
u
R
↾
A
x
∧
Rel
⁡
R
↾
A
3
1
2
mpbiran2
⊢
Disj
R
↾
A
↔
∀
x
∃
*
u
u
R
↾
A
x
4
brres
⊢
x
∈
V
→
u
R
↾
A
x
↔
u
∈
A
∧
u
R
x
5
4
elv
⊢
u
R
↾
A
x
↔
u
∈
A
∧
u
R
x
6
5
mobii
⊢
∃
*
u
u
R
↾
A
x
↔
∃
*
u
u
∈
A
∧
u
R
x
7
df-rmo
⊢
∃
*
u
∈
A
u
R
x
↔
∃
*
u
u
∈
A
∧
u
R
x
8
6
7
bitr4i
⊢
∃
*
u
u
R
↾
A
x
↔
∃
*
u
∈
A
u
R
x
9
8
albii
⊢
∀
x
∃
*
u
u
R
↾
A
x
↔
∀
x
∃
*
u
∈
A
u
R
x
10
3
9
bitri
⊢
Disj
R
↾
A
↔
∀
x
∃
*
u
∈
A
u
R
x
11
id
⊢
u
=
v
→
u
=
v
12
11
inecmo
⊢
Rel
⁡
R
→
∀
u
∈
A
∀
v
∈
A
u
=
v
∨
u
R
∩
v
R
=
∅
↔
∀
x
∃
*
u
∈
A
u
R
x
13
10
12
bitr4id
⊢
Rel
⁡
R
→
Disj
R
↾
A
↔
∀
u
∈
A
∀
v
∈
A
u
=
v
∨
u
R
∩
v
R
=
∅