Metamath Proof Explorer


Theorem disjres

Description: Disjoint restriction. (Contributed by Peter Mazsa, 25-Aug-2023)

Ref Expression
Assertion disjres Rel R Disj R A u A v A u = v u R v R =

Proof

Step Hyp Ref Expression
1 relres Rel R A
2 dfdisjALTV4 Disj R A x * u u R A x Rel R A
3 1 2 mpbiran2 Disj R A x * u u R A x
4 brres x V u R A x u A u R x
5 4 elv u R A x u A u R x
6 5 mobii * u u R A x * u u A u R x
7 df-rmo * u A u R x * u u A u R x
8 6 7 bitr4i * u u R A x * u A u R x
9 8 albii x * u u R A x x * u A u R x
10 3 9 bitri Disj R A x * u A u R x
11 id u = v u = v
12 11 inecmo Rel R u A v A u = v u R v R = x * u A u R x
13 10 12 bitr4id Rel R Disj R A u A v A u = v u R v R =