Metamath Proof Explorer


Theorem disjressuc2

Description: Double restricted quantification over the union of a set and its singleton. (Contributed by Peter Mazsa, 22-Aug-2023)

Ref Expression
Assertion disjressuc2 A V u A A v A A u = v u R v R = u A v A u = v u R v R = u A u R A R =

Proof

Step Hyp Ref Expression
1 eqeq1 u = A u = v A = v
2 eceq1 u = A u R = A R
3 2 ineq1d u = A u R v R = A R v R
4 3 eqeq1d u = A u R v R = A R v R =
5 1 4 orbi12d u = A u = v u R v R = A = v A R v R =
6 eqeq2 v = A u = v u = A
7 eceq1 v = A v R = A R
8 7 ineq2d v = A u R v R = u R A R
9 8 eqeq1d v = A u R v R = u R A R =
10 6 9 orbi12d v = A u = v u R v R = u = A u R A R =
11 eqeq1 u = A u = A A = A
12 2 ineq1d u = A u R A R = A R A R
13 12 eqeq1d u = A u R A R = A R A R =
14 11 13 orbi12d u = A u = A u R A R = A = A A R A R =
15 5 10 14 2ralunsn A V u A A v A A u = v u R v R = u A v A u = v u R v R = u A u = A u R A R = v A A = v A R v R = A = A A R A R =
16 eqid A = A
17 16 orci A = A A R A R =
18 17 biantru v A A = v A R v R = v A A = v A R v R = A = A A R A R =
19 18 anbi2i u A v A u = v u R v R = u A u = A u R A R = v A A = v A R v R = u A v A u = v u R v R = u A u = A u R A R = v A A = v A R v R = A = A A R A R =
20 15 19 bitr4di A V u A A v A A u = v u R v R = u A v A u = v u R v R = u A u = A u R A R = v A A = v A R v R =
21 eqeq1 u = v u = A v = A
22 eqcom v = A A = v
23 21 22 bitrdi u = v u = A A = v
24 eceq1 u = v u R = v R
25 24 ineq1d u = v u R A R = v R A R
26 incom v R A R = A R v R
27 25 26 eqtrdi u = v u R A R = A R v R
28 27 eqeq1d u = v u R A R = A R v R =
29 23 28 orbi12d u = v u = A u R A R = A = v A R v R =
30 29 cbvralvw u A u = A u R A R = v A A = v A R v R =
31 30 biimpi u A u = A u R A R = v A A = v A R v R =
32 31 pm4.71i u A u = A u R A R = u A u = A u R A R = v A A = v A R v R =
33 32 anbi2i u A v A u = v u R v R = u A u = A u R A R = u A v A u = v u R v R = u A u = A u R A R = v A A = v A R v R =
34 3anass u A v A u = v u R v R = u A u = A u R A R = v A A = v A R v R = u A v A u = v u R v R = u A u = A u R A R = v A A = v A R v R =
35 df-3an u A v A u = v u R v R = u A u = A u R A R = v A A = v A R v R = u A v A u = v u R v R = u A u = A u R A R = v A A = v A R v R =
36 33 34 35 3bitr2ri u A v A u = v u R v R = u A u = A u R A R = v A A = v A R v R = u A v A u = v u R v R = u A u = A u R A R =
37 20 36 bitrdi A V u A A v A A u = v u R v R = u A v A u = v u R v R = u A u = A u R A R =
38 elneq u A u A
39 38 neneqd u A ¬ u = A
40 39 biorfd u A u R A R = u = A u R A R =
41 40 ralbiia u A u R A R = u A u = A u R A R =
42 41 anbi2i u A v A u = v u R v R = u A u R A R = u A v A u = v u R v R = u A u = A u R A R =
43 37 42 bitr4di A V u A A v A A u = v u R v R = u A v A u = v u R v R = u A u R A R =