Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Preparatory theorems
disjresundif
Next ⟩
ressucdifsn2
Metamath Proof Explorer
Ascii
Unicode
Theorem
disjresundif
Description:
Lemma for
ressucdifsn2
.
(Contributed by
Peter Mazsa
, 24-Jul-2024)
Ref
Expression
Assertion
disjresundif
⊢
A
∩
B
=
∅
→
R
↾
A
∪
B
∖
R
↾
B
=
R
↾
A
Proof
Step
Hyp
Ref
Expression
1
resundi
⊢
R
↾
A
∪
B
=
R
↾
A
∪
R
↾
B
2
1
difeq1i
⊢
R
↾
A
∪
B
∖
R
↾
B
=
R
↾
A
∪
R
↾
B
∖
R
↾
B
3
difun2
⊢
R
↾
A
∪
R
↾
B
∖
R
↾
B
=
R
↾
A
∖
R
↾
B
4
2
3
eqtri
⊢
R
↾
A
∪
B
∖
R
↾
B
=
R
↾
A
∖
R
↾
B
5
disjresdif
⊢
A
∩
B
=
∅
→
R
↾
A
∖
R
↾
B
=
R
↾
A
6
4
5
eqtrid
⊢
A
∩
B
=
∅
→
R
↾
A
∪
B
∖
R
↾
B
=
R
↾
A