Metamath Proof Explorer


Theorem disjresundif

Description: Lemma for ressucdifsn2 . (Contributed by Peter Mazsa, 24-Jul-2024)

Ref Expression
Assertion disjresundif A B = R A B R B = R A

Proof

Step Hyp Ref Expression
1 resundi R A B = R A R B
2 1 difeq1i R A B R B = R A R B R B
3 difun2 R A R B R B = R A R B
4 2 3 eqtri R A B R B = R A R B
5 disjresdif A B = R A R B = R A
6 4 5 eqtrid A B = R A B R B = R A