Metamath Proof Explorer


Theorem disjrnmpt

Description: Rewriting a disjoint collection using the range of a mapping. (Contributed by Thierry Arnoux, 27-May-2020)

Ref Expression
Assertion disjrnmpt Disj x A B Disj y ran x A B y

Proof

Step Hyp Ref Expression
1 disjabrex Disj x A B Disj y z | x A z = B y
2 eqid x A B = x A B
3 2 rnmpt ran x A B = z | x A z = B
4 disjeq1 ran x A B = z | x A z = B Disj y ran x A B y Disj y z | x A z = B y
5 3 4 ax-mp Disj y ran x A B y Disj y z | x A z = B y
6 1 5 sylibr Disj x A B Disj y ran x A B y