Step |
Hyp |
Ref |
Expression |
1 |
|
disjrnmpt2.1 |
|
2 |
|
id |
|
3 |
2
|
cbvdisjv |
|
4 |
|
id |
|
5 |
4
|
ndisj2 |
|
6 |
5
|
biimpi |
|
7 |
3 6
|
sylnbi |
|
8 |
1
|
elrnmpt |
|
9 |
8
|
ibi |
|
10 |
|
nfcv |
|
11 |
|
nfcsb1v |
|
12 |
|
csbeq1a |
|
13 |
10 11 12
|
cbvmpt |
|
14 |
1 13
|
eqtri |
|
15 |
14
|
elrnmpt |
|
16 |
15
|
ibi |
|
17 |
9 16
|
anim12i |
|
18 |
|
nfv |
|
19 |
11
|
nfeq2 |
|
20 |
18 19
|
reean |
|
21 |
17 20
|
sylibr |
|
22 |
21
|
adantr |
|
23 |
|
nfmpt1 |
|
24 |
1 23
|
nfcxfr |
|
25 |
24
|
nfrn |
|
26 |
25
|
nfcri |
|
27 |
25
|
nfcri |
|
28 |
26 27
|
nfan |
|
29 |
|
nfv |
|
30 |
28 29
|
nfan |
|
31 |
|
simpll |
|
32 |
12
|
adantl |
|
33 |
|
id |
|
34 |
33
|
eqcomd |
|
35 |
34
|
ad2antlr |
|
36 |
31 32 35
|
3eqtrd |
|
37 |
36
|
adantll |
|
38 |
|
simpll |
|
39 |
38
|
neneqd |
|
40 |
37 39
|
pm2.65da |
|
41 |
40
|
neqned |
|
42 |
41
|
adantlr |
|
43 |
|
id |
|
44 |
43
|
eqcomd |
|
45 |
44
|
ad2antrl |
|
46 |
34
|
ad2antll |
|
47 |
45 46
|
ineq12d |
|
48 |
|
simpl |
|
49 |
47 48
|
eqnetrd |
|
50 |
49
|
adantll |
|
51 |
42 50
|
jca |
|
52 |
51
|
ex |
|
53 |
52
|
adantl |
|
54 |
53
|
reximdv |
|
55 |
54
|
a1d |
|
56 |
30 55
|
reximdai |
|
57 |
22 56
|
mpd |
|
58 |
57
|
ex |
|
59 |
58
|
a1i |
|
60 |
59
|
rexlimdvv |
|
61 |
7 60
|
mpd |
|
62 |
|
csbeq1 |
|
63 |
62
|
ndisj2 |
|
64 |
|
nfcv |
|
65 |
|
nfv |
|
66 |
|
nfcsb1v |
|
67 |
66 11
|
nfin |
|
68 |
|
nfcv |
|
69 |
67 68
|
nfne |
|
70 |
65 69
|
nfan |
|
71 |
64 70
|
nfrex |
|
72 |
|
nfv |
|
73 |
|
neeq1 |
|
74 |
|
csbeq1 |
|
75 |
|
csbid |
|
76 |
74 75
|
eqtrdi |
|
77 |
76
|
ineq1d |
|
78 |
77
|
neeq1d |
|
79 |
73 78
|
anbi12d |
|
80 |
79
|
rexbidv |
|
81 |
71 72 80
|
cbvrexw |
|
82 |
63 81
|
bitri |
|
83 |
|
nfcv |
|
84 |
|
csbeq1a |
|
85 |
83 66 84
|
cbvdisj |
|
86 |
82 85
|
xchnxbir |
|
87 |
61 86
|
sylibr |
|
88 |
87
|
con4i |
|