Metamath Proof Explorer


Theorem disjsn2

Description: Two distinct singletons are disjoint. (Contributed by NM, 25-May-1998)

Ref Expression
Assertion disjsn2 A B A B =

Proof

Step Hyp Ref Expression
1 elsni B A B = A
2 1 eqcomd B A A = B
3 2 necon3ai A B ¬ B A
4 disjsn A B = ¬ B A
5 3 4 sylibr A B A B =