Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
disjsn2
Next ⟩
disjpr2
Metamath Proof Explorer
Ascii
Unicode
Theorem
disjsn2
Description:
Two distinct singletons are disjoint.
(Contributed by
NM
, 25-May-1998)
Ref
Expression
Assertion
disjsn2
⊢
A
≠
B
→
A
∩
B
=
∅
Proof
Step
Hyp
Ref
Expression
1
elsni
⊢
B
∈
A
→
B
=
A
2
1
eqcomd
⊢
B
∈
A
→
A
=
B
3
2
necon3ai
⊢
A
≠
B
→
¬
B
∈
A
4
disjsn
⊢
A
∩
B
=
∅
↔
¬
B
∈
A
5
3
4
sylibr
⊢
A
≠
B
→
A
∩
B
=
∅