Metamath Proof Explorer


Theorem disjss1f

Description: A subset of a disjoint collection is disjoint. (Contributed by Thierry Arnoux, 6-Apr-2017)

Ref Expression
Hypotheses disjss1f.1 _ x A
disjss1f.2 _ x B
Assertion disjss1f A B Disj x B C Disj x A C

Proof

Step Hyp Ref Expression
1 disjss1f.1 _ x A
2 disjss1f.2 _ x B
3 1 2 ssrmof A B * x B y C * x A y C
4 3 alimdv A B y * x B y C y * x A y C
5 df-disj Disj x B C y * x B y C
6 df-disj Disj x A C y * x A y C
7 4 5 6 3imtr4g A B Disj x B C Disj x A C