Metamath Proof Explorer


Theorem disjss2

Description: If each element of a collection is contained in a disjoint collection, the original collection is also disjoint. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Assertion disjss2 x A B C Disj x A C Disj x A B

Proof

Step Hyp Ref Expression
1 ssel B C y B y C
2 1 ralimi x A B C x A y B y C
3 rmoim x A y B y C * x A y C * x A y B
4 2 3 syl x A B C * x A y C * x A y B
5 4 alimdv x A B C y * x A y C y * x A y B
6 df-disj Disj x A C y * x A y C
7 df-disj Disj x A B y * x A y B
8 5 6 7 3imtr4g x A B C Disj x A C Disj x A B