Metamath Proof Explorer


Theorem disjsuc

Description: Disjoint range Cartesian product, special case. (Contributed by Peter Mazsa, 25-Aug-2023)

Ref Expression
Assertion disjsuc A V Disj R E -1 suc A Disj R E -1 A u A u A = u R A R =

Proof

Step Hyp Ref Expression
1 disjsuc2 A V u A A v A A u = v u R E -1 v R E -1 = u A v A u = v u R E -1 v R E -1 = u A u A = u R A R =
2 df-suc suc A = A A
3 2 reseq2i E -1 suc A = E -1 A A
4 3 xrneq2i R E -1 suc A = R E -1 A A
5 4 disjeqi Disj R E -1 suc A Disj R E -1 A A
6 disjxrnres5 Disj R E -1 A A u A A v A A u = v u R E -1 v R E -1 =
7 5 6 bitri Disj R E -1 suc A u A A v A A u = v u R E -1 v R E -1 =
8 disjxrnres5 Disj R E -1 A u A v A u = v u R E -1 v R E -1 =
9 8 anbi1i Disj R E -1 A u A u A = u R A R = u A v A u = v u R E -1 v R E -1 = u A u A = u R A R =
10 1 7 9 3bitr4g A V Disj R E -1 suc A Disj R E -1 A u A u A = u R A R =