Metamath Proof Explorer


Theorem disjsuc2

Description: Double restricted quantification over the union of a set and its singleton. (Contributed by Peter Mazsa, 22-Aug-2023)

Ref Expression
Assertion disjsuc2 A V u A A v A A u = v u R E -1 v R E -1 = u A v A u = v u R E -1 v R E -1 = u A u A = u R A R =

Proof

Step Hyp Ref Expression
1 disjressuc2 A V u A A v A A u = v u R E -1 v R E -1 = u A v A u = v u R E -1 v R E -1 = u A u R E -1 A R E -1 =
2 disjecxrncnvep u V A V u R E -1 A R E -1 = u A = u R A R =
3 2 el2v1 A V u R E -1 A R E -1 = u A = u R A R =
4 3 ralbidv A V u A u R E -1 A R E -1 = u A u A = u R A R =
5 4 anbi2d A V u A v A u = v u R E -1 v R E -1 = u A u R E -1 A R E -1 = u A v A u = v u R E -1 v R E -1 = u A u A = u R A R =
6 1 5 bitrd A V u A A v A A u = v u R E -1 v R E -1 = u A v A u = v u R E -1 v R E -1 = u A u A = u R A R =