Metamath Proof Explorer


Theorem disjtpsn

Description: The disjoint intersection of an unordered triple and a singleton. (Contributed by AV, 14-Nov-2021)

Ref Expression
Assertion disjtpsn A D B D C D A B C D =

Proof

Step Hyp Ref Expression
1 df-tp A B C = A B C
2 1 ineq1i A B C D = A B C D
3 disjprsn A D B D A B D =
4 3 3adant3 A D B D C D A B D =
5 disjsn2 C D C D =
6 5 3ad2ant3 A D B D C D C D =
7 4 6 jca A D B D C D A B D = C D =
8 undisj1 A B D = C D = A B C D =
9 7 8 sylib A D B D C D A B C D =
10 2 9 eqtrid A D B D C D A B C D =