Metamath Proof Explorer


Theorem disjun0

Description: Adding the empty element preserves disjointness. (Contributed by Thierry Arnoux, 30-May-2020)

Ref Expression
Assertion disjun0 Disj x A x Disj x A x

Proof

Step Hyp Ref Expression
1 snssi A A
2 ssequn2 A A = A
3 1 2 sylib A A = A
4 3 disjeq1d A Disj x A x Disj x A x
5 4 biimparc Disj x A x A Disj x A x
6 simpl Disj x A x ¬ A Disj x A x
7 in0 x A x =
8 7 a1i Disj x A x ¬ A x A x =
9 0ex V
10 id x = x =
11 10 disjunsn V ¬ A Disj x A x Disj x A x x A x =
12 9 11 mpan ¬ A Disj x A x Disj x A x x A x =
13 12 adantl Disj x A x ¬ A Disj x A x Disj x A x x A x =
14 6 8 13 mpbir2and Disj x A x ¬ A Disj x A x
15 5 14 pm2.61dan Disj x A x Disj x A x