Metamath Proof Explorer


Theorem disjuniel

Description: A set of elements B of a disjoint set A is disjoint with another element of that set. (Contributed by Thierry Arnoux, 24-May-2020)

Ref Expression
Hypotheses disjuniel.1 φ Disj x A x
disjuniel.2 φ B A
disjuniel.3 φ C A B
Assertion disjuniel φ B C =

Proof

Step Hyp Ref Expression
1 disjuniel.1 φ Disj x A x
2 disjuniel.2 φ B A
3 disjuniel.3 φ C A B
4 uniiun B = x B x
5 4 ineq1i B C = x B x C
6 id x = C x = C
7 1 6 2 3 disjiunel φ x B x C =
8 5 7 syl5eq φ B C =