Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Disjointness
disjx0
Next ⟩
disjprgw
Metamath Proof Explorer
Ascii
Unicode
Theorem
disjx0
Description:
An empty collection is disjoint.
(Contributed by
Mario Carneiro
, 14-Nov-2016)
Ref
Expression
Assertion
disjx0
⊢
Disj
x
∈
∅
B
Proof
Step
Hyp
Ref
Expression
1
0ss
⊢
∅
⊆
∅
2
disjxsn
⊢
Disj
x
∈
∅
B
3
disjss1
⊢
∅
⊆
∅
→
Disj
x
∈
∅
B
→
Disj
x
∈
∅
B
4
1
2
3
mp2
⊢
Disj
x
∈
∅
B