Metamath Proof Explorer


Theorem disjx0

Description: An empty collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Assertion disjx0 Disj x B

Proof

Step Hyp Ref Expression
1 0ss
2 disjxsn Disj x B
3 disjss1 Disj x B Disj x B
4 1 2 3 mp2 Disj x B