Step |
Hyp |
Ref |
Expression |
1 |
|
disjxpin.1 |
|
2 |
|
disjxpin.2 |
|
3 |
|
disjxpin.3 |
|
4 |
|
disjxpin.4 |
|
5 |
|
xp1st |
|
6 |
5
|
ad2antrl |
|
7 |
|
xp1st |
|
8 |
7
|
ad2antll |
|
9 |
|
simpl |
|
10 |
|
disjors |
|
11 |
3 10
|
sylib |
|
12 |
|
eqeq1 |
|
13 |
|
csbeq1 |
|
14 |
13
|
ineq1d |
|
15 |
14
|
eqeq1d |
|
16 |
12 15
|
orbi12d |
|
17 |
|
eqeq2 |
|
18 |
|
csbeq1 |
|
19 |
18
|
ineq2d |
|
20 |
19
|
eqeq1d |
|
21 |
17 20
|
orbi12d |
|
22 |
16 21
|
rspc2v |
|
23 |
11 22
|
syl5 |
|
24 |
23
|
imp |
|
25 |
6 8 9 24
|
syl21anc |
|
26 |
|
xp2nd |
|
27 |
26
|
ad2antrl |
|
28 |
|
xp2nd |
|
29 |
28
|
ad2antll |
|
30 |
|
disjors |
|
31 |
4 30
|
sylib |
|
32 |
|
eqeq1 |
|
33 |
|
csbeq1 |
|
34 |
33
|
ineq1d |
|
35 |
34
|
eqeq1d |
|
36 |
32 35
|
orbi12d |
|
37 |
|
eqeq2 |
|
38 |
|
csbeq1 |
|
39 |
38
|
ineq2d |
|
40 |
39
|
eqeq1d |
|
41 |
37 40
|
orbi12d |
|
42 |
36 41
|
rspc2v |
|
43 |
31 42
|
syl5 |
|
44 |
43
|
imp |
|
45 |
27 29 9 44
|
syl21anc |
|
46 |
25 45
|
jca |
|
47 |
|
anddi |
|
48 |
46 47
|
sylib |
|
49 |
|
orass |
|
50 |
48 49
|
sylib |
|
51 |
|
xpopth |
|
52 |
51
|
adantl |
|
53 |
52
|
biimpd |
|
54 |
|
inss2 |
|
55 |
|
csbin |
|
56 |
|
csbin |
|
57 |
55 56
|
ineq12i |
|
58 |
|
in4 |
|
59 |
57 58
|
eqtri |
|
60 |
|
vex |
|
61 |
|
csbnestgw |
|
62 |
60 61
|
ax-mp |
|
63 |
|
fvex |
|
64 |
63 2
|
csbie |
|
65 |
64
|
csbeq2i |
|
66 |
|
csbfv |
|
67 |
|
csbeq1 |
|
68 |
66 67
|
ax-mp |
|
69 |
62 65 68
|
3eqtr3ri |
|
70 |
|
vex |
|
71 |
|
csbnestgw |
|
72 |
70 71
|
ax-mp |
|
73 |
64
|
csbeq2i |
|
74 |
|
csbfv |
|
75 |
|
csbeq1 |
|
76 |
74 75
|
ax-mp |
|
77 |
72 73 76
|
3eqtr3ri |
|
78 |
69 77
|
ineq12i |
|
79 |
54 59 78
|
3sstr4i |
|
80 |
|
sseq0 |
|
81 |
79 80
|
mpan |
|
82 |
81
|
a1i |
|
83 |
82
|
adantld |
|
84 |
|
inss1 |
|
85 |
|
csbnestgw |
|
86 |
60 85
|
ax-mp |
|
87 |
|
fvex |
|
88 |
87 1
|
csbie |
|
89 |
88
|
csbeq2i |
|
90 |
|
csbfv |
|
91 |
|
csbeq1 |
|
92 |
90 91
|
ax-mp |
|
93 |
86 89 92
|
3eqtr3ri |
|
94 |
|
csbnestgw |
|
95 |
70 94
|
ax-mp |
|
96 |
88
|
csbeq2i |
|
97 |
|
csbfv |
|
98 |
|
csbeq1 |
|
99 |
97 98
|
ax-mp |
|
100 |
95 96 99
|
3eqtr3ri |
|
101 |
93 100
|
ineq12i |
|
102 |
84 59 101
|
3sstr4i |
|
103 |
|
sseq0 |
|
104 |
102 103
|
mpan |
|
105 |
104
|
a1i |
|
106 |
105
|
adantrd |
|
107 |
82
|
adantld |
|
108 |
106 107
|
jaod |
|
109 |
83 108
|
jaod |
|
110 |
53 109
|
orim12d |
|
111 |
50 110
|
mpd |
|
112 |
111
|
ralrimivva |
|
113 |
|
disjors |
|
114 |
112 113
|
sylibr |
|