Metamath Proof Explorer


Theorem disjxpin

Description: Derive a disjunction over a Cartesian product from the disjunctions over its first and second elements. (Contributed by Thierry Arnoux, 9-Mar-2018)

Ref Expression
Hypotheses disjxpin.1 x = 1 st p C = E
disjxpin.2 y = 2 nd p D = F
disjxpin.3 φ Disj x A C
disjxpin.4 φ Disj y B D
Assertion disjxpin φ Disj p A × B E F

Proof

Step Hyp Ref Expression
1 disjxpin.1 x = 1 st p C = E
2 disjxpin.2 y = 2 nd p D = F
3 disjxpin.3 φ Disj x A C
4 disjxpin.4 φ Disj y B D
5 xp1st q A × B 1 st q A
6 5 ad2antrl φ q A × B r A × B 1 st q A
7 xp1st r A × B 1 st r A
8 7 ad2antll φ q A × B r A × B 1 st r A
9 simpl φ q A × B r A × B φ
10 disjors Disj x A C a A c A a = c a / x C c / x C =
11 3 10 sylib φ a A c A a = c a / x C c / x C =
12 eqeq1 a = 1 st q a = c 1 st q = c
13 csbeq1 a = 1 st q a / x C = 1 st q / x C
14 13 ineq1d a = 1 st q a / x C c / x C = 1 st q / x C c / x C
15 14 eqeq1d a = 1 st q a / x C c / x C = 1 st q / x C c / x C =
16 12 15 orbi12d a = 1 st q a = c a / x C c / x C = 1 st q = c 1 st q / x C c / x C =
17 eqeq2 c = 1 st r 1 st q = c 1 st q = 1 st r
18 csbeq1 c = 1 st r c / x C = 1 st r / x C
19 18 ineq2d c = 1 st r 1 st q / x C c / x C = 1 st q / x C 1 st r / x C
20 19 eqeq1d c = 1 st r 1 st q / x C c / x C = 1 st q / x C 1 st r / x C =
21 17 20 orbi12d c = 1 st r 1 st q = c 1 st q / x C c / x C = 1 st q = 1 st r 1 st q / x C 1 st r / x C =
22 16 21 rspc2v 1 st q A 1 st r A a A c A a = c a / x C c / x C = 1 st q = 1 st r 1 st q / x C 1 st r / x C =
23 11 22 syl5 1 st q A 1 st r A φ 1 st q = 1 st r 1 st q / x C 1 st r / x C =
24 23 imp 1 st q A 1 st r A φ 1 st q = 1 st r 1 st q / x C 1 st r / x C =
25 6 8 9 24 syl21anc φ q A × B r A × B 1 st q = 1 st r 1 st q / x C 1 st r / x C =
26 xp2nd q A × B 2 nd q B
27 26 ad2antrl φ q A × B r A × B 2 nd q B
28 xp2nd r A × B 2 nd r B
29 28 ad2antll φ q A × B r A × B 2 nd r B
30 disjors Disj y B D b B d B b = d b / y D d / y D =
31 4 30 sylib φ b B d B b = d b / y D d / y D =
32 eqeq1 b = 2 nd q b = d 2 nd q = d
33 csbeq1 b = 2 nd q b / y D = 2 nd q / y D
34 33 ineq1d b = 2 nd q b / y D d / y D = 2 nd q / y D d / y D
35 34 eqeq1d b = 2 nd q b / y D d / y D = 2 nd q / y D d / y D =
36 32 35 orbi12d b = 2 nd q b = d b / y D d / y D = 2 nd q = d 2 nd q / y D d / y D =
37 eqeq2 d = 2 nd r 2 nd q = d 2 nd q = 2 nd r
38 csbeq1 d = 2 nd r d / y D = 2 nd r / y D
39 38 ineq2d d = 2 nd r 2 nd q / y D d / y D = 2 nd q / y D 2 nd r / y D
40 39 eqeq1d d = 2 nd r 2 nd q / y D d / y D = 2 nd q / y D 2 nd r / y D =
41 37 40 orbi12d d = 2 nd r 2 nd q = d 2 nd q / y D d / y D = 2 nd q = 2 nd r 2 nd q / y D 2 nd r / y D =
42 36 41 rspc2v 2 nd q B 2 nd r B b B d B b = d b / y D d / y D = 2 nd q = 2 nd r 2 nd q / y D 2 nd r / y D =
43 31 42 syl5 2 nd q B 2 nd r B φ 2 nd q = 2 nd r 2 nd q / y D 2 nd r / y D =
44 43 imp 2 nd q B 2 nd r B φ 2 nd q = 2 nd r 2 nd q / y D 2 nd r / y D =
45 27 29 9 44 syl21anc φ q A × B r A × B 2 nd q = 2 nd r 2 nd q / y D 2 nd r / y D =
46 25 45 jca φ q A × B r A × B 1 st q = 1 st r 1 st q / x C 1 st r / x C = 2 nd q = 2 nd r 2 nd q / y D 2 nd r / y D =
47 anddi 1 st q = 1 st r 1 st q / x C 1 st r / x C = 2 nd q = 2 nd r 2 nd q / y D 2 nd r / y D = 1 st q = 1 st r 2 nd q = 2 nd r 1 st q = 1 st r 2 nd q / y D 2 nd r / y D = 1 st q / x C 1 st r / x C = 2 nd q = 2 nd r 1 st q / x C 1 st r / x C = 2 nd q / y D 2 nd r / y D =
48 46 47 sylib φ q A × B r A × B 1 st q = 1 st r 2 nd q = 2 nd r 1 st q = 1 st r 2 nd q / y D 2 nd r / y D = 1 st q / x C 1 st r / x C = 2 nd q = 2 nd r 1 st q / x C 1 st r / x C = 2 nd q / y D 2 nd r / y D =
49 orass 1 st q = 1 st r 2 nd q = 2 nd r 1 st q = 1 st r 2 nd q / y D 2 nd r / y D = 1 st q / x C 1 st r / x C = 2 nd q = 2 nd r 1 st q / x C 1 st r / x C = 2 nd q / y D 2 nd r / y D = 1 st q = 1 st r 2 nd q = 2 nd r 1 st q = 1 st r 2 nd q / y D 2 nd r / y D = 1 st q / x C 1 st r / x C = 2 nd q = 2 nd r 1 st q / x C 1 st r / x C = 2 nd q / y D 2 nd r / y D =
50 48 49 sylib φ q A × B r A × B 1 st q = 1 st r 2 nd q = 2 nd r 1 st q = 1 st r 2 nd q / y D 2 nd r / y D = 1 st q / x C 1 st r / x C = 2 nd q = 2 nd r 1 st q / x C 1 st r / x C = 2 nd q / y D 2 nd r / y D =
51 xpopth q A × B r A × B 1 st q = 1 st r 2 nd q = 2 nd r q = r
52 51 adantl φ q A × B r A × B 1 st q = 1 st r 2 nd q = 2 nd r q = r
53 52 biimpd φ q A × B r A × B 1 st q = 1 st r 2 nd q = 2 nd r q = r
54 inss2 q / p E r / p E q / p F r / p F q / p F r / p F
55 csbin q / p E F = q / p E q / p F
56 csbin r / p E F = r / p E r / p F
57 55 56 ineq12i q / p E F r / p E F = q / p E q / p F r / p E r / p F
58 in4 q / p E q / p F r / p E r / p F = q / p E r / p E q / p F r / p F
59 57 58 eqtri q / p E F r / p E F = q / p E r / p E q / p F r / p F
60 vex q V
61 csbnestgw q V q / p 2 nd p / y D = q / p 2 nd p / y D
62 60 61 ax-mp q / p 2 nd p / y D = q / p 2 nd p / y D
63 fvex 2 nd p V
64 63 2 csbie 2 nd p / y D = F
65 64 csbeq2i q / p 2 nd p / y D = q / p F
66 csbfv q / p 2 nd p = 2 nd q
67 csbeq1 q / p 2 nd p = 2 nd q q / p 2 nd p / y D = 2 nd q / y D
68 66 67 ax-mp q / p 2 nd p / y D = 2 nd q / y D
69 62 65 68 3eqtr3ri 2 nd q / y D = q / p F
70 vex r V
71 csbnestgw r V r / p 2 nd p / y D = r / p 2 nd p / y D
72 70 71 ax-mp r / p 2 nd p / y D = r / p 2 nd p / y D
73 64 csbeq2i r / p 2 nd p / y D = r / p F
74 csbfv r / p 2 nd p = 2 nd r
75 csbeq1 r / p 2 nd p = 2 nd r r / p 2 nd p / y D = 2 nd r / y D
76 74 75 ax-mp r / p 2 nd p / y D = 2 nd r / y D
77 72 73 76 3eqtr3ri 2 nd r / y D = r / p F
78 69 77 ineq12i 2 nd q / y D 2 nd r / y D = q / p F r / p F
79 54 59 78 3sstr4i q / p E F r / p E F 2 nd q / y D 2 nd r / y D
80 sseq0 q / p E F r / p E F 2 nd q / y D 2 nd r / y D 2 nd q / y D 2 nd r / y D = q / p E F r / p E F =
81 79 80 mpan 2 nd q / y D 2 nd r / y D = q / p E F r / p E F =
82 81 a1i φ q A × B r A × B 2 nd q / y D 2 nd r / y D = q / p E F r / p E F =
83 82 adantld φ q A × B r A × B 1 st q = 1 st r 2 nd q / y D 2 nd r / y D = q / p E F r / p E F =
84 inss1 q / p E r / p E q / p F r / p F q / p E r / p E
85 csbnestgw q V q / p 1 st p / x C = q / p 1 st p / x C
86 60 85 ax-mp q / p 1 st p / x C = q / p 1 st p / x C
87 fvex 1 st p V
88 87 1 csbie 1 st p / x C = E
89 88 csbeq2i q / p 1 st p / x C = q / p E
90 csbfv q / p 1 st p = 1 st q
91 csbeq1 q / p 1 st p = 1 st q q / p 1 st p / x C = 1 st q / x C
92 90 91 ax-mp q / p 1 st p / x C = 1 st q / x C
93 86 89 92 3eqtr3ri 1 st q / x C = q / p E
94 csbnestgw r V r / p 1 st p / x C = r / p 1 st p / x C
95 70 94 ax-mp r / p 1 st p / x C = r / p 1 st p / x C
96 88 csbeq2i r / p 1 st p / x C = r / p E
97 csbfv r / p 1 st p = 1 st r
98 csbeq1 r / p 1 st p = 1 st r r / p 1 st p / x C = 1 st r / x C
99 97 98 ax-mp r / p 1 st p / x C = 1 st r / x C
100 95 96 99 3eqtr3ri 1 st r / x C = r / p E
101 93 100 ineq12i 1 st q / x C 1 st r / x C = q / p E r / p E
102 84 59 101 3sstr4i q / p E F r / p E F 1 st q / x C 1 st r / x C
103 sseq0 q / p E F r / p E F 1 st q / x C 1 st r / x C 1 st q / x C 1 st r / x C = q / p E F r / p E F =
104 102 103 mpan 1 st q / x C 1 st r / x C = q / p E F r / p E F =
105 104 a1i φ q A × B r A × B 1 st q / x C 1 st r / x C = q / p E F r / p E F =
106 105 adantrd φ q A × B r A × B 1 st q / x C 1 st r / x C = 2 nd q = 2 nd r q / p E F r / p E F =
107 82 adantld φ q A × B r A × B 1 st q / x C 1 st r / x C = 2 nd q / y D 2 nd r / y D = q / p E F r / p E F =
108 106 107 jaod φ q A × B r A × B 1 st q / x C 1 st r / x C = 2 nd q = 2 nd r 1 st q / x C 1 st r / x C = 2 nd q / y D 2 nd r / y D = q / p E F r / p E F =
109 83 108 jaod φ q A × B r A × B 1 st q = 1 st r 2 nd q / y D 2 nd r / y D = 1 st q / x C 1 st r / x C = 2 nd q = 2 nd r 1 st q / x C 1 st r / x C = 2 nd q / y D 2 nd r / y D = q / p E F r / p E F =
110 53 109 orim12d φ q A × B r A × B 1 st q = 1 st r 2 nd q = 2 nd r 1 st q = 1 st r 2 nd q / y D 2 nd r / y D = 1 st q / x C 1 st r / x C = 2 nd q = 2 nd r 1 st q / x C 1 st r / x C = 2 nd q / y D 2 nd r / y D = q = r q / p E F r / p E F =
111 50 110 mpd φ q A × B r A × B q = r q / p E F r / p E F =
112 111 ralrimivva φ q A × B r A × B q = r q / p E F r / p E F =
113 disjors Disj p A × B E F q A × B r A × B q = r q / p E F r / p E F =
114 112 113 sylibr φ Disj p A × B E F