Metamath Proof Explorer


Theorem disjxrnres5

Description: Disjoint range Cartesian product. (Contributed by Peter Mazsa, 25-Aug-2023)

Ref Expression
Assertion disjxrnres5 Disj R S A u A v A u = v u R S v R S =

Proof

Step Hyp Ref Expression
1 xrnres2 R S A = R S A
2 1 disjeqi Disj R S A Disj R S A
3 xrnrel Rel R S
4 disjres Rel R S Disj R S A u A v A u = v u R S v R S =
5 3 4 ax-mp Disj R S A u A v A u = v u R S v R S =
6 2 5 bitr3i Disj R S A u A v A u = v u R S v R S =