Metamath Proof Explorer


Theorem disjxsn

Description: A singleton collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Assertion disjxsn Disj x A B

Proof

Step Hyp Ref Expression
1 dfdisj2 Disj x A B y * x x A y B
2 moeq * x x = A
3 elsni x A x = A
4 3 adantr x A y B x = A
5 4 moimi * x x = A * x x A y B
6 2 5 ax-mp * x x A y B
7 1 6 mpgbir Disj x A B