Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Disjointness
disjxsn
Next ⟩
disjx0
Metamath Proof Explorer
Ascii
Unicode
Theorem
disjxsn
Description:
A singleton collection is disjoint.
(Contributed by
Mario Carneiro
, 14-Nov-2016)
Ref
Expression
Assertion
disjxsn
⊢
Disj
x
∈
A
B
Proof
Step
Hyp
Ref
Expression
1
dfdisj2
⊢
Disj
x
∈
A
B
↔
∀
y
∃
*
x
x
∈
A
∧
y
∈
B
2
moeq
⊢
∃
*
x
x
=
A
3
elsni
⊢
x
∈
A
→
x
=
A
4
3
adantr
⊢
x
∈
A
∧
y
∈
B
→
x
=
A
5
4
moimi
⊢
∃
*
x
x
=
A
→
∃
*
x
x
∈
A
∧
y
∈
B
6
2
5
ax-mp
⊢
∃
*
x
x
∈
A
∧
y
∈
B
7
1
6
mpgbir
⊢
Disj
x
∈
A
B