Metamath Proof Explorer


Theorem disjxun0

Description: Simplify a disjoint union. (Contributed by Thierry Arnoux, 27-Nov-2023)

Ref Expression
Hypothesis disjxun0.1 φ x B C =
Assertion disjxun0 φ Disj x A B C Disj x A C

Proof

Step Hyp Ref Expression
1 disjxun0.1 φ x B C =
2 nel02 C = ¬ y C
3 1 2 syl φ x B ¬ y C
4 3 rmounid φ * x A B y C * x A y C
5 4 albidv φ y * x A B y C y * x A y C
6 df-disj Disj x A B C y * x A B y C
7 df-disj Disj x A C y * x A y C
8 5 6 7 3bitr4g φ Disj x A B C Disj x A C