Metamath Proof Explorer


Theorem disjxwwlkn

Description: Sets of walks (as words) extended by an edge are disjunct if each set contains extensions of distinct walks. (Contributed by Alexander van der Vekens, 21-Aug-2018) (Revised by AV, 20-Apr-2021) (Revised by AV, 26-Oct-2022)

Ref Expression
Hypotheses wwlksnextprop.x X = N + 1 WWalksN G
wwlksnextprop.e E = Edg G
wwlksnextprop.y Y = w N WWalksN G | w 0 = P
Assertion disjxwwlkn Disj y Y x X | x prefix M = y y 0 = P lastS y lastS x E

Proof

Step Hyp Ref Expression
1 wwlksnextprop.x X = N + 1 WWalksN G
2 wwlksnextprop.e E = Edg G
3 wwlksnextprop.y Y = w N WWalksN G | w 0 = P
4 simp1 x prefix M = y y 0 = P lastS y lastS x E x prefix M = y
5 4 rgenw x X x prefix M = y y 0 = P lastS y lastS x E x prefix M = y
6 ss2rab x X | x prefix M = y y 0 = P lastS y lastS x E x X | x prefix M = y x X x prefix M = y y 0 = P lastS y lastS x E x prefix M = y
7 5 6 mpbir x X | x prefix M = y y 0 = P lastS y lastS x E x X | x prefix M = y
8 wwlkssswwlksn N + 1 WWalksN G WWalks G
9 eqid Vtx G = Vtx G
10 9 wwlkssswrd WWalks G Word Vtx G
11 8 10 sstri N + 1 WWalksN G Word Vtx G
12 1 11 eqsstri X Word Vtx G
13 rabss2 X Word Vtx G x X | x prefix M = y x Word Vtx G | x prefix M = y
14 12 13 ax-mp x X | x prefix M = y x Word Vtx G | x prefix M = y
15 7 14 sstri x X | x prefix M = y y 0 = P lastS y lastS x E x Word Vtx G | x prefix M = y
16 15 rgenw y Y x X | x prefix M = y y 0 = P lastS y lastS x E x Word Vtx G | x prefix M = y
17 disjwrdpfx Disj y Y x Word Vtx G | x prefix M = y
18 disjss2 y Y x X | x prefix M = y y 0 = P lastS y lastS x E x Word Vtx G | x prefix M = y Disj y Y x Word Vtx G | x prefix M = y Disj y Y x X | x prefix M = y y 0 = P lastS y lastS x E
19 16 17 18 mp2 Disj y Y x X | x prefix M = y y 0 = P lastS y lastS x E