Metamath Proof Explorer


Theorem disjxwwlksn

Description: Sets of walks (as words) extended by an edge are disjunct if each set contains extensions of distinct walks. (Contributed by Alexander van der Vekens, 29-Jul-2018) (Revised by AV, 19-Apr-2021) (Revised by AV, 27-Oct-2022)

Ref Expression
Hypotheses wwlksnexthasheq.v V = Vtx G
wwlksnexthasheq.e E = Edg G
Assertion disjxwwlksn Disj y N WWalksN G x Word V | x prefix N = y y 0 = P lastS y lastS x E

Proof

Step Hyp Ref Expression
1 wwlksnexthasheq.v V = Vtx G
2 wwlksnexthasheq.e E = Edg G
3 simp1 x prefix N = y y 0 = P lastS y lastS x E x prefix N = y
4 3 a1i x Word V x prefix N = y y 0 = P lastS y lastS x E x prefix N = y
5 4 ss2rabi x Word V | x prefix N = y y 0 = P lastS y lastS x E x Word V | x prefix N = y
6 5 rgenw y N WWalksN G x Word V | x prefix N = y y 0 = P lastS y lastS x E x Word V | x prefix N = y
7 disjwrdpfx Disj y N WWalksN G x Word V | x prefix N = y
8 disjss2 y N WWalksN G x Word V | x prefix N = y y 0 = P lastS y lastS x E x Word V | x prefix N = y Disj y N WWalksN G x Word V | x prefix N = y Disj y N WWalksN G x Word V | x prefix N = y y 0 = P lastS y lastS x E
9 6 7 8 mp2 Disj y N WWalksN G x Word V | x prefix N = y y 0 = P lastS y lastS x E