Step |
Hyp |
Ref |
Expression |
1 |
|
simplr |
|
2 |
|
simpr |
|
3 |
|
vex |
|
4 |
3
|
snelpw |
|
5 |
2 4
|
sylib |
|
6 |
|
vsnid |
|
7 |
6
|
a1i |
|
8 |
|
llyi |
|
9 |
1 5 7 8
|
syl3anc |
|
10 |
|
simpr1 |
|
11 |
|
simpr2 |
|
12 |
11
|
snssd |
|
13 |
10 12
|
eqssd |
|
14 |
13
|
oveq2d |
|
15 |
|
simplll |
|
16 |
|
simplr |
|
17 |
16
|
snssd |
|
18 |
|
restdis |
|
19 |
15 17 18
|
syl2anc |
|
20 |
14 19
|
eqtrd |
|
21 |
|
simpr3 |
|
22 |
20 21
|
eqeltrrd |
|
23 |
22
|
ex |
|
24 |
23
|
rexlimdvw |
|
25 |
9 24
|
mpd |
|
26 |
25
|
ralrimiva |
|
27 |
|
distop |
|
28 |
27
|
adantr |
|
29 |
|
elpwi |
|
30 |
29
|
adantl |
|
31 |
|
ssralv |
|
32 |
30 31
|
syl |
|
33 |
|
simprl |
|
34 |
33
|
snssd |
|
35 |
30
|
adantr |
|
36 |
34 35
|
sstrd |
|
37 |
|
snex |
|
38 |
37
|
elpw |
|
39 |
36 38
|
sylibr |
|
40 |
37
|
elpw |
|
41 |
34 40
|
sylibr |
|
42 |
39 41
|
elind |
|
43 |
|
snidg |
|
44 |
43
|
ad2antrl |
|
45 |
|
simpll |
|
46 |
45 36 18
|
syl2anc |
|
47 |
|
simprr |
|
48 |
46 47
|
eqeltrd |
|
49 |
|
eleq2 |
|
50 |
|
oveq2 |
|
51 |
50
|
eleq1d |
|
52 |
49 51
|
anbi12d |
|
53 |
52
|
rspcev |
|
54 |
42 44 48 53
|
syl12anc |
|
55 |
54
|
expr |
|
56 |
55
|
ralimdva |
|
57 |
32 56
|
syld |
|
58 |
57
|
imp |
|
59 |
58
|
an32s |
|
60 |
59
|
ralrimiva |
|
61 |
|
islly |
|
62 |
28 60 61
|
sylanbrc |
|
63 |
26 62
|
impbida |
|