Metamath Proof Explorer


Theorem distgp

Description: Any group equipped with the discrete topology is a topological group. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypotheses distgp.1 B = Base G
distgp.2 J = TopOpen G
Assertion distgp G Grp J = 𝒫 B G TopGrp

Proof

Step Hyp Ref Expression
1 distgp.1 B = Base G
2 distgp.2 J = TopOpen G
3 simpl G Grp J = 𝒫 B G Grp
4 simpr G Grp J = 𝒫 B J = 𝒫 B
5 1 fvexi B V
6 distopon B V 𝒫 B TopOn B
7 5 6 ax-mp 𝒫 B TopOn B
8 4 7 eqeltrdi G Grp J = 𝒫 B J TopOn B
9 1 2 istps G TopSp J TopOn B
10 8 9 sylibr G Grp J = 𝒫 B G TopSp
11 eqid - G = - G
12 1 11 grpsubf G Grp - G : B × B B
13 12 adantr G Grp J = 𝒫 B - G : B × B B
14 5 5 xpex B × B V
15 5 14 elmap - G B B × B - G : B × B B
16 13 15 sylibr G Grp J = 𝒫 B - G B B × B
17 4 4 oveq12d G Grp J = 𝒫 B J × t J = 𝒫 B × t 𝒫 B
18 txdis B V B V 𝒫 B × t 𝒫 B = 𝒫 B × B
19 5 5 18 mp2an 𝒫 B × t 𝒫 B = 𝒫 B × B
20 17 19 eqtrdi G Grp J = 𝒫 B J × t J = 𝒫 B × B
21 20 oveq1d G Grp J = 𝒫 B J × t J Cn J = 𝒫 B × B Cn J
22 cndis B × B V J TopOn B 𝒫 B × B Cn J = B B × B
23 14 8 22 sylancr G Grp J = 𝒫 B 𝒫 B × B Cn J = B B × B
24 21 23 eqtrd G Grp J = 𝒫 B J × t J Cn J = B B × B
25 16 24 eleqtrrd G Grp J = 𝒫 B - G J × t J Cn J
26 2 11 istgp2 G TopGrp G Grp G TopSp - G J × t J Cn J
27 3 10 25 26 syl3anbrc G Grp J = 𝒫 B G TopGrp