Metamath Proof Explorer


Theorem distrlem1pr

Description: Lemma for distributive law for positive reals. (Contributed by NM, 1-May-1996) (Revised by Mario Carneiro, 13-Jun-2013) (New usage is discouraged.)

Ref Expression
Assertion distrlem1pr A 𝑷 B 𝑷 C 𝑷 A 𝑷 B + 𝑷 C A 𝑷 B + 𝑷 A 𝑷 C

Proof

Step Hyp Ref Expression
1 addclpr B 𝑷 C 𝑷 B + 𝑷 C 𝑷
2 df-mp 𝑷 = y 𝑷 , z 𝑷 f | g y h z f = g 𝑸 h
3 mulclnq g 𝑸 h 𝑸 g 𝑸 h 𝑸
4 2 3 genpelv A 𝑷 B + 𝑷 C 𝑷 w A 𝑷 B + 𝑷 C x A v B + 𝑷 C w = x 𝑸 v
5 1 4 sylan2 A 𝑷 B 𝑷 C 𝑷 w A 𝑷 B + 𝑷 C x A v B + 𝑷 C w = x 𝑸 v
6 5 3impb A 𝑷 B 𝑷 C 𝑷 w A 𝑷 B + 𝑷 C x A v B + 𝑷 C w = x 𝑸 v
7 df-plp + 𝑷 = w 𝑷 , x 𝑷 f | g w h x f = g + 𝑸 h
8 addclnq g 𝑸 h 𝑸 g + 𝑸 h 𝑸
9 7 8 genpelv B 𝑷 C 𝑷 v B + 𝑷 C y B z C v = y + 𝑸 z
10 9 3adant1 A 𝑷 B 𝑷 C 𝑷 v B + 𝑷 C y B z C v = y + 𝑸 z
11 10 adantr A 𝑷 B 𝑷 C 𝑷 x A w = x 𝑸 v v B + 𝑷 C y B z C v = y + 𝑸 z
12 simprr A 𝑷 B 𝑷 C 𝑷 x A w = x 𝑸 v w = x 𝑸 v
13 simpr y B z C v = y + 𝑸 z v = y + 𝑸 z
14 oveq2 v = y + 𝑸 z x 𝑸 v = x 𝑸 y + 𝑸 z
15 14 eqeq2d v = y + 𝑸 z w = x 𝑸 v w = x 𝑸 y + 𝑸 z
16 15 biimpac w = x 𝑸 v v = y + 𝑸 z w = x 𝑸 y + 𝑸 z
17 distrnq x 𝑸 y + 𝑸 z = x 𝑸 y + 𝑸 x 𝑸 z
18 16 17 eqtrdi w = x 𝑸 v v = y + 𝑸 z w = x 𝑸 y + 𝑸 x 𝑸 z
19 12 13 18 syl2an A 𝑷 B 𝑷 C 𝑷 x A w = x 𝑸 v y B z C v = y + 𝑸 z w = x 𝑸 y + 𝑸 x 𝑸 z
20 mulclpr A 𝑷 B 𝑷 A 𝑷 B 𝑷
21 20 3adant3 A 𝑷 B 𝑷 C 𝑷 A 𝑷 B 𝑷
22 21 ad2antrr A 𝑷 B 𝑷 C 𝑷 x A w = x 𝑸 v y B z C v = y + 𝑸 z A 𝑷 B 𝑷
23 mulclpr A 𝑷 C 𝑷 A 𝑷 C 𝑷
24 23 3adant2 A 𝑷 B 𝑷 C 𝑷 A 𝑷 C 𝑷
25 24 ad2antrr A 𝑷 B 𝑷 C 𝑷 x A w = x 𝑸 v y B z C v = y + 𝑸 z A 𝑷 C 𝑷
26 simpll y B z C v = y + 𝑸 z y B
27 2 3 genpprecl A 𝑷 B 𝑷 x A y B x 𝑸 y A 𝑷 B
28 27 3adant3 A 𝑷 B 𝑷 C 𝑷 x A y B x 𝑸 y A 𝑷 B
29 28 impl A 𝑷 B 𝑷 C 𝑷 x A y B x 𝑸 y A 𝑷 B
30 29 adantlrr A 𝑷 B 𝑷 C 𝑷 x A w = x 𝑸 v y B x 𝑸 y A 𝑷 B
31 26 30 sylan2 A 𝑷 B 𝑷 C 𝑷 x A w = x 𝑸 v y B z C v = y + 𝑸 z x 𝑸 y A 𝑷 B
32 simplr y B z C v = y + 𝑸 z z C
33 2 3 genpprecl A 𝑷 C 𝑷 x A z C x 𝑸 z A 𝑷 C
34 33 3adant2 A 𝑷 B 𝑷 C 𝑷 x A z C x 𝑸 z A 𝑷 C
35 34 impl A 𝑷 B 𝑷 C 𝑷 x A z C x 𝑸 z A 𝑷 C
36 35 adantlrr A 𝑷 B 𝑷 C 𝑷 x A w = x 𝑸 v z C x 𝑸 z A 𝑷 C
37 32 36 sylan2 A 𝑷 B 𝑷 C 𝑷 x A w = x 𝑸 v y B z C v = y + 𝑸 z x 𝑸 z A 𝑷 C
38 7 8 genpprecl A 𝑷 B 𝑷 A 𝑷 C 𝑷 x 𝑸 y A 𝑷 B x 𝑸 z A 𝑷 C x 𝑸 y + 𝑸 x 𝑸 z A 𝑷 B + 𝑷 A 𝑷 C
39 38 imp A 𝑷 B 𝑷 A 𝑷 C 𝑷 x 𝑸 y A 𝑷 B x 𝑸 z A 𝑷 C x 𝑸 y + 𝑸 x 𝑸 z A 𝑷 B + 𝑷 A 𝑷 C
40 22 25 31 37 39 syl22anc A 𝑷 B 𝑷 C 𝑷 x A w = x 𝑸 v y B z C v = y + 𝑸 z x 𝑸 y + 𝑸 x 𝑸 z A 𝑷 B + 𝑷 A 𝑷 C
41 19 40 eqeltrd A 𝑷 B 𝑷 C 𝑷 x A w = x 𝑸 v y B z C v = y + 𝑸 z w A 𝑷 B + 𝑷 A 𝑷 C
42 41 exp32 A 𝑷 B 𝑷 C 𝑷 x A w = x 𝑸 v y B z C v = y + 𝑸 z w A 𝑷 B + 𝑷 A 𝑷 C
43 42 rexlimdvv A 𝑷 B 𝑷 C 𝑷 x A w = x 𝑸 v y B z C v = y + 𝑸 z w A 𝑷 B + 𝑷 A 𝑷 C
44 11 43 sylbid A 𝑷 B 𝑷 C 𝑷 x A w = x 𝑸 v v B + 𝑷 C w A 𝑷 B + 𝑷 A 𝑷 C
45 44 exp32 A 𝑷 B 𝑷 C 𝑷 x A w = x 𝑸 v v B + 𝑷 C w A 𝑷 B + 𝑷 A 𝑷 C
46 45 com34 A 𝑷 B 𝑷 C 𝑷 x A v B + 𝑷 C w = x 𝑸 v w A 𝑷 B + 𝑷 A 𝑷 C
47 46 impd A 𝑷 B 𝑷 C 𝑷 x A v B + 𝑷 C w = x 𝑸 v w A 𝑷 B + 𝑷 A 𝑷 C
48 47 rexlimdvv A 𝑷 B 𝑷 C 𝑷 x A v B + 𝑷 C w = x 𝑸 v w A 𝑷 B + 𝑷 A 𝑷 C
49 6 48 sylbid A 𝑷 B 𝑷 C 𝑷 w A 𝑷 B + 𝑷 C w A 𝑷 B + 𝑷 A 𝑷 C
50 49 ssrdv A 𝑷 B 𝑷 C 𝑷 A 𝑷 B + 𝑷 C A 𝑷 B + 𝑷 A 𝑷 C