Step |
Hyp |
Ref |
Expression |
1 |
|
simpl2 |
|
2 |
|
simprlr |
|
3 |
|
elprnq |
|
4 |
1 2 3
|
syl2anc |
|
5 |
|
simp1 |
|
6 |
|
simprl |
|
7 |
|
elprnq |
|
8 |
5 6 7
|
syl2an |
|
9 |
|
simpl3 |
|
10 |
|
simprrr |
|
11 |
|
elprnq |
|
12 |
9 10 11
|
syl2anc |
|
13 |
|
vex |
|
14 |
|
vex |
|
15 |
|
ltmnq |
|
16 |
|
vex |
|
17 |
|
mulcomnq |
|
18 |
13 14 15 16 17
|
caovord2 |
|
19 |
|
mulclnq |
|
20 |
|
ovex |
|
21 |
|
ovex |
|
22 |
|
ltanq |
|
23 |
|
ovex |
|
24 |
|
addcomnq |
|
25 |
20 21 22 23 24
|
caovord2 |
|
26 |
19 25
|
syl |
|
27 |
18 26
|
sylan9bb |
|
28 |
4 8 12 27
|
syl12anc |
|
29 |
|
simpl1 |
|
30 |
|
addclpr |
|
31 |
30
|
3adant1 |
|
32 |
31
|
adantr |
|
33 |
|
mulclpr |
|
34 |
29 32 33
|
syl2anc |
|
35 |
|
distrnq |
|
36 |
|
simprrl |
|
37 |
|
df-plp |
|
38 |
|
addclnq |
|
39 |
37 38
|
genpprecl |
|
40 |
39
|
imp |
|
41 |
1 9 2 10 40
|
syl22anc |
|
42 |
|
df-mp |
|
43 |
|
mulclnq |
|
44 |
42 43
|
genpprecl |
|
45 |
44
|
imp |
|
46 |
29 32 36 41 45
|
syl22anc |
|
47 |
35 46
|
eqeltrrid |
|
48 |
|
prcdnq |
|
49 |
34 47 48
|
syl2anc |
|
50 |
28 49
|
sylbid |
|
51 |
|
simpll |
|
52 |
|
elprnq |
|
53 |
5 51 52
|
syl2an |
|
54 |
|
vex |
|
55 |
14 13 15 54 17
|
caovord2 |
|
56 |
|
mulclnq |
|
57 |
|
ltanq |
|
58 |
56 57
|
syl |
|
59 |
55 58
|
sylan9bbr |
|
60 |
53 4 12 59
|
syl21anc |
|
61 |
|
distrnq |
|
62 |
|
simprll |
|
63 |
42 43
|
genpprecl |
|
64 |
63
|
imp |
|
65 |
29 32 62 41 64
|
syl22anc |
|
66 |
61 65
|
eqeltrrid |
|
67 |
|
prcdnq |
|
68 |
34 66 67
|
syl2anc |
|
69 |
60 68
|
sylbid |
|
70 |
|
ltsonq |
|
71 |
|
sotrieq |
|
72 |
70 71
|
mpan |
|
73 |
53 8 72
|
syl2anc |
|
74 |
|
oveq1 |
|
75 |
74
|
oveq2d |
|
76 |
61 75
|
eqtrid |
|
77 |
76
|
eleq1d |
|
78 |
65 77
|
syl5ibcom |
|
79 |
73 78
|
sylbird |
|
80 |
50 69 79
|
ecase3d |
|