| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl2 |
|
| 2 |
|
simprlr |
|
| 3 |
|
elprnq |
|
| 4 |
1 2 3
|
syl2anc |
|
| 5 |
|
simp1 |
|
| 6 |
|
simprl |
|
| 7 |
|
elprnq |
|
| 8 |
5 6 7
|
syl2an |
|
| 9 |
|
simpl3 |
|
| 10 |
|
simprrr |
|
| 11 |
|
elprnq |
|
| 12 |
9 10 11
|
syl2anc |
|
| 13 |
|
vex |
|
| 14 |
|
vex |
|
| 15 |
|
ltmnq |
|
| 16 |
|
vex |
|
| 17 |
|
mulcomnq |
|
| 18 |
13 14 15 16 17
|
caovord2 |
|
| 19 |
|
mulclnq |
|
| 20 |
|
ovex |
|
| 21 |
|
ovex |
|
| 22 |
|
ltanq |
|
| 23 |
|
ovex |
|
| 24 |
|
addcomnq |
|
| 25 |
20 21 22 23 24
|
caovord2 |
|
| 26 |
19 25
|
syl |
|
| 27 |
18 26
|
sylan9bb |
|
| 28 |
4 8 12 27
|
syl12anc |
|
| 29 |
|
simpl1 |
|
| 30 |
|
addclpr |
|
| 31 |
30
|
3adant1 |
|
| 32 |
31
|
adantr |
|
| 33 |
|
mulclpr |
|
| 34 |
29 32 33
|
syl2anc |
|
| 35 |
|
distrnq |
|
| 36 |
|
simprrl |
|
| 37 |
|
df-plp |
|
| 38 |
|
addclnq |
|
| 39 |
37 38
|
genpprecl |
|
| 40 |
39
|
imp |
|
| 41 |
1 9 2 10 40
|
syl22anc |
|
| 42 |
|
df-mp |
|
| 43 |
|
mulclnq |
|
| 44 |
42 43
|
genpprecl |
|
| 45 |
44
|
imp |
|
| 46 |
29 32 36 41 45
|
syl22anc |
|
| 47 |
35 46
|
eqeltrrid |
|
| 48 |
|
prcdnq |
|
| 49 |
34 47 48
|
syl2anc |
|
| 50 |
28 49
|
sylbid |
|
| 51 |
|
simpll |
|
| 52 |
|
elprnq |
|
| 53 |
5 51 52
|
syl2an |
|
| 54 |
|
vex |
|
| 55 |
14 13 15 54 17
|
caovord2 |
|
| 56 |
|
mulclnq |
|
| 57 |
|
ltanq |
|
| 58 |
56 57
|
syl |
|
| 59 |
55 58
|
sylan9bbr |
|
| 60 |
53 4 12 59
|
syl21anc |
|
| 61 |
|
distrnq |
|
| 62 |
|
simprll |
|
| 63 |
42 43
|
genpprecl |
|
| 64 |
63
|
imp |
|
| 65 |
29 32 62 41 64
|
syl22anc |
|
| 66 |
61 65
|
eqeltrrid |
|
| 67 |
|
prcdnq |
|
| 68 |
34 66 67
|
syl2anc |
|
| 69 |
60 68
|
sylbid |
|
| 70 |
|
ltsonq |
|
| 71 |
|
sotrieq |
|
| 72 |
70 71
|
mpan |
|
| 73 |
53 8 72
|
syl2anc |
|
| 74 |
|
oveq1 |
|
| 75 |
74
|
oveq2d |
|
| 76 |
61 75
|
eqtrid |
|
| 77 |
76
|
eleq1d |
|
| 78 |
65 77
|
syl5ibcom |
|
| 79 |
73 78
|
sylbird |
|
| 80 |
50 69 79
|
ecase3d |
|