Metamath Proof Explorer


Theorem distrnq

Description: Multiplication of positive fractions is distributive. (Contributed by NM, 2-Sep-1995) (Revised by Mario Carneiro, 28-Apr-2013) (New usage is discouraged.)

Ref Expression
Assertion distrnq A 𝑸 B + 𝑸 C = A 𝑸 B + 𝑸 A 𝑸 C

Proof

Step Hyp Ref Expression
1 mulcompi 1 st A 𝑵 1 st B = 1 st B 𝑵 1 st A
2 1 oveq1i 1 st A 𝑵 1 st B 𝑵 2 nd A 𝑵 2 nd C = 1 st B 𝑵 1 st A 𝑵 2 nd A 𝑵 2 nd C
3 fvex 1 st B V
4 fvex 1 st A V
5 fvex 2 nd A V
6 mulcompi x 𝑵 y = y 𝑵 x
7 mulasspi x 𝑵 y 𝑵 z = x 𝑵 y 𝑵 z
8 fvex 2 nd C V
9 3 4 5 6 7 8 caov411 1 st B 𝑵 1 st A 𝑵 2 nd A 𝑵 2 nd C = 2 nd A 𝑵 1 st A 𝑵 1 st B 𝑵 2 nd C
10 2 9 eqtri 1 st A 𝑵 1 st B 𝑵 2 nd A 𝑵 2 nd C = 2 nd A 𝑵 1 st A 𝑵 1 st B 𝑵 2 nd C
11 mulcompi 1 st A 𝑵 1 st C = 1 st C 𝑵 1 st A
12 11 oveq1i 1 st A 𝑵 1 st C 𝑵 2 nd A 𝑵 2 nd B = 1 st C 𝑵 1 st A 𝑵 2 nd A 𝑵 2 nd B
13 fvex 1 st C V
14 fvex 2 nd B V
15 13 4 5 6 7 14 caov411 1 st C 𝑵 1 st A 𝑵 2 nd A 𝑵 2 nd B = 2 nd A 𝑵 1 st A 𝑵 1 st C 𝑵 2 nd B
16 12 15 eqtri 1 st A 𝑵 1 st C 𝑵 2 nd A 𝑵 2 nd B = 2 nd A 𝑵 1 st A 𝑵 1 st C 𝑵 2 nd B
17 10 16 oveq12i 1 st A 𝑵 1 st B 𝑵 2 nd A 𝑵 2 nd C + 𝑵 1 st A 𝑵 1 st C 𝑵 2 nd A 𝑵 2 nd B = 2 nd A 𝑵 1 st A 𝑵 1 st B 𝑵 2 nd C + 𝑵 2 nd A 𝑵 1 st A 𝑵 1 st C 𝑵 2 nd B
18 distrpi 2 nd A 𝑵 1 st A 𝑵 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B = 2 nd A 𝑵 1 st A 𝑵 1 st B 𝑵 2 nd C + 𝑵 2 nd A 𝑵 1 st A 𝑵 1 st C 𝑵 2 nd B
19 mulasspi 2 nd A 𝑵 1 st A 𝑵 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B = 2 nd A 𝑵 1 st A 𝑵 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B
20 17 18 19 3eqtr2i 1 st A 𝑵 1 st B 𝑵 2 nd A 𝑵 2 nd C + 𝑵 1 st A 𝑵 1 st C 𝑵 2 nd A 𝑵 2 nd B = 2 nd A 𝑵 1 st A 𝑵 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B
21 mulasspi 2 nd A 𝑵 2 nd B 𝑵 2 nd A 𝑵 2 nd C = 2 nd A 𝑵 2 nd B 𝑵 2 nd A 𝑵 2 nd C
22 14 5 8 6 7 caov12 2 nd B 𝑵 2 nd A 𝑵 2 nd C = 2 nd A 𝑵 2 nd B 𝑵 2 nd C
23 22 oveq2i 2 nd A 𝑵 2 nd B 𝑵 2 nd A 𝑵 2 nd C = 2 nd A 𝑵 2 nd A 𝑵 2 nd B 𝑵 2 nd C
24 21 23 eqtri 2 nd A 𝑵 2 nd B 𝑵 2 nd A 𝑵 2 nd C = 2 nd A 𝑵 2 nd A 𝑵 2 nd B 𝑵 2 nd C
25 20 24 opeq12i 1 st A 𝑵 1 st B 𝑵 2 nd A 𝑵 2 nd C + 𝑵 1 st A 𝑵 1 st C 𝑵 2 nd A 𝑵 2 nd B 2 nd A 𝑵 2 nd B 𝑵 2 nd A 𝑵 2 nd C = 2 nd A 𝑵 1 st A 𝑵 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B 2 nd A 𝑵 2 nd A 𝑵 2 nd B 𝑵 2 nd C
26 elpqn A 𝑸 A 𝑵 × 𝑵
27 26 3ad2ant1 A 𝑸 B 𝑸 C 𝑸 A 𝑵 × 𝑵
28 xp2nd A 𝑵 × 𝑵 2 nd A 𝑵
29 27 28 syl A 𝑸 B 𝑸 C 𝑸 2 nd A 𝑵
30 xp1st A 𝑵 × 𝑵 1 st A 𝑵
31 27 30 syl A 𝑸 B 𝑸 C 𝑸 1 st A 𝑵
32 elpqn B 𝑸 B 𝑵 × 𝑵
33 32 3ad2ant2 A 𝑸 B 𝑸 C 𝑸 B 𝑵 × 𝑵
34 xp1st B 𝑵 × 𝑵 1 st B 𝑵
35 33 34 syl A 𝑸 B 𝑸 C 𝑸 1 st B 𝑵
36 elpqn C 𝑸 C 𝑵 × 𝑵
37 36 3ad2ant3 A 𝑸 B 𝑸 C 𝑸 C 𝑵 × 𝑵
38 xp2nd C 𝑵 × 𝑵 2 nd C 𝑵
39 37 38 syl A 𝑸 B 𝑸 C 𝑸 2 nd C 𝑵
40 mulclpi 1 st B 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd C 𝑵
41 35 39 40 syl2anc A 𝑸 B 𝑸 C 𝑸 1 st B 𝑵 2 nd C 𝑵
42 xp1st C 𝑵 × 𝑵 1 st C 𝑵
43 37 42 syl A 𝑸 B 𝑸 C 𝑸 1 st C 𝑵
44 xp2nd B 𝑵 × 𝑵 2 nd B 𝑵
45 33 44 syl A 𝑸 B 𝑸 C 𝑸 2 nd B 𝑵
46 mulclpi 1 st C 𝑵 2 nd B 𝑵 1 st C 𝑵 2 nd B 𝑵
47 43 45 46 syl2anc A 𝑸 B 𝑸 C 𝑸 1 st C 𝑵 2 nd B 𝑵
48 addclpi 1 st B 𝑵 2 nd C 𝑵 1 st C 𝑵 2 nd B 𝑵 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B 𝑵
49 41 47 48 syl2anc A 𝑸 B 𝑸 C 𝑸 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B 𝑵
50 mulclpi 1 st A 𝑵 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B 𝑵 1 st A 𝑵 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B 𝑵
51 31 49 50 syl2anc A 𝑸 B 𝑸 C 𝑸 1 st A 𝑵 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B 𝑵
52 mulclpi 2 nd B 𝑵 2 nd C 𝑵 2 nd B 𝑵 2 nd C 𝑵
53 45 39 52 syl2anc A 𝑸 B 𝑸 C 𝑸 2 nd B 𝑵 2 nd C 𝑵
54 mulclpi 2 nd A 𝑵 2 nd B 𝑵 2 nd C 𝑵 2 nd A 𝑵 2 nd B 𝑵 2 nd C 𝑵
55 29 53 54 syl2anc A 𝑸 B 𝑸 C 𝑸 2 nd A 𝑵 2 nd B 𝑵 2 nd C 𝑵
56 mulcanenq 2 nd A 𝑵 1 st A 𝑵 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B 𝑵 2 nd A 𝑵 2 nd B 𝑵 2 nd C 𝑵 2 nd A 𝑵 1 st A 𝑵 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B 2 nd A 𝑵 2 nd A 𝑵 2 nd B 𝑵 2 nd C ~ 𝑸 1 st A 𝑵 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B 2 nd A 𝑵 2 nd B 𝑵 2 nd C
57 29 51 55 56 syl3anc A 𝑸 B 𝑸 C 𝑸 2 nd A 𝑵 1 st A 𝑵 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B 2 nd A 𝑵 2 nd A 𝑵 2 nd B 𝑵 2 nd C ~ 𝑸 1 st A 𝑵 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B 2 nd A 𝑵 2 nd B 𝑵 2 nd C
58 25 57 eqbrtrid A 𝑸 B 𝑸 C 𝑸 1 st A 𝑵 1 st B 𝑵 2 nd A 𝑵 2 nd C + 𝑵 1 st A 𝑵 1 st C 𝑵 2 nd A 𝑵 2 nd B 2 nd A 𝑵 2 nd B 𝑵 2 nd A 𝑵 2 nd C ~ 𝑸 1 st A 𝑵 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B 2 nd A 𝑵 2 nd B 𝑵 2 nd C
59 mulpipq2 A 𝑵 × 𝑵 B 𝑵 × 𝑵 A 𝑝𝑸 B = 1 st A 𝑵 1 st B 2 nd A 𝑵 2 nd B
60 27 33 59 syl2anc A 𝑸 B 𝑸 C 𝑸 A 𝑝𝑸 B = 1 st A 𝑵 1 st B 2 nd A 𝑵 2 nd B
61 mulpipq2 A 𝑵 × 𝑵 C 𝑵 × 𝑵 A 𝑝𝑸 C = 1 st A 𝑵 1 st C 2 nd A 𝑵 2 nd C
62 27 37 61 syl2anc A 𝑸 B 𝑸 C 𝑸 A 𝑝𝑸 C = 1 st A 𝑵 1 st C 2 nd A 𝑵 2 nd C
63 60 62 oveq12d A 𝑸 B 𝑸 C 𝑸 A 𝑝𝑸 B + 𝑝𝑸 A 𝑝𝑸 C = 1 st A 𝑵 1 st B 2 nd A 𝑵 2 nd B + 𝑝𝑸 1 st A 𝑵 1 st C 2 nd A 𝑵 2 nd C
64 mulclpi 1 st A 𝑵 1 st B 𝑵 1 st A 𝑵 1 st B 𝑵
65 31 35 64 syl2anc A 𝑸 B 𝑸 C 𝑸 1 st A 𝑵 1 st B 𝑵
66 mulclpi 2 nd A 𝑵 2 nd B 𝑵 2 nd A 𝑵 2 nd B 𝑵
67 29 45 66 syl2anc A 𝑸 B 𝑸 C 𝑸 2 nd A 𝑵 2 nd B 𝑵
68 mulclpi 1 st A 𝑵 1 st C 𝑵 1 st A 𝑵 1 st C 𝑵
69 31 43 68 syl2anc A 𝑸 B 𝑸 C 𝑸 1 st A 𝑵 1 st C 𝑵
70 mulclpi 2 nd A 𝑵 2 nd C 𝑵 2 nd A 𝑵 2 nd C 𝑵
71 29 39 70 syl2anc A 𝑸 B 𝑸 C 𝑸 2 nd A 𝑵 2 nd C 𝑵
72 addpipq 1 st A 𝑵 1 st B 𝑵 2 nd A 𝑵 2 nd B 𝑵 1 st A 𝑵 1 st C 𝑵 2 nd A 𝑵 2 nd C 𝑵 1 st A 𝑵 1 st B 2 nd A 𝑵 2 nd B + 𝑝𝑸 1 st A 𝑵 1 st C 2 nd A 𝑵 2 nd C = 1 st A 𝑵 1 st B 𝑵 2 nd A 𝑵 2 nd C + 𝑵 1 st A 𝑵 1 st C 𝑵 2 nd A 𝑵 2 nd B 2 nd A 𝑵 2 nd B 𝑵 2 nd A 𝑵 2 nd C
73 65 67 69 71 72 syl22anc A 𝑸 B 𝑸 C 𝑸 1 st A 𝑵 1 st B 2 nd A 𝑵 2 nd B + 𝑝𝑸 1 st A 𝑵 1 st C 2 nd A 𝑵 2 nd C = 1 st A 𝑵 1 st B 𝑵 2 nd A 𝑵 2 nd C + 𝑵 1 st A 𝑵 1 st C 𝑵 2 nd A 𝑵 2 nd B 2 nd A 𝑵 2 nd B 𝑵 2 nd A 𝑵 2 nd C
74 63 73 eqtrd A 𝑸 B 𝑸 C 𝑸 A 𝑝𝑸 B + 𝑝𝑸 A 𝑝𝑸 C = 1 st A 𝑵 1 st B 𝑵 2 nd A 𝑵 2 nd C + 𝑵 1 st A 𝑵 1 st C 𝑵 2 nd A 𝑵 2 nd B 2 nd A 𝑵 2 nd B 𝑵 2 nd A 𝑵 2 nd C
75 relxp Rel 𝑵 × 𝑵
76 1st2nd Rel 𝑵 × 𝑵 A 𝑵 × 𝑵 A = 1 st A 2 nd A
77 75 27 76 sylancr A 𝑸 B 𝑸 C 𝑸 A = 1 st A 2 nd A
78 addpipq2 B 𝑵 × 𝑵 C 𝑵 × 𝑵 B + 𝑝𝑸 C = 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B 2 nd B 𝑵 2 nd C
79 33 37 78 syl2anc A 𝑸 B 𝑸 C 𝑸 B + 𝑝𝑸 C = 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B 2 nd B 𝑵 2 nd C
80 77 79 oveq12d A 𝑸 B 𝑸 C 𝑸 A 𝑝𝑸 B + 𝑝𝑸 C = 1 st A 2 nd A 𝑝𝑸 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B 2 nd B 𝑵 2 nd C
81 mulpipq 1 st A 𝑵 2 nd A 𝑵 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B 𝑵 2 nd B 𝑵 2 nd C 𝑵 1 st A 2 nd A 𝑝𝑸 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B 2 nd B 𝑵 2 nd C = 1 st A 𝑵 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B 2 nd A 𝑵 2 nd B 𝑵 2 nd C
82 31 29 49 53 81 syl22anc A 𝑸 B 𝑸 C 𝑸 1 st A 2 nd A 𝑝𝑸 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B 2 nd B 𝑵 2 nd C = 1 st A 𝑵 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B 2 nd A 𝑵 2 nd B 𝑵 2 nd C
83 80 82 eqtrd A 𝑸 B 𝑸 C 𝑸 A 𝑝𝑸 B + 𝑝𝑸 C = 1 st A 𝑵 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B 2 nd A 𝑵 2 nd B 𝑵 2 nd C
84 58 74 83 3brtr4d A 𝑸 B 𝑸 C 𝑸 A 𝑝𝑸 B + 𝑝𝑸 A 𝑝𝑸 C ~ 𝑸 A 𝑝𝑸 B + 𝑝𝑸 C
85 mulpqf 𝑝𝑸 : 𝑵 × 𝑵 × 𝑵 × 𝑵 𝑵 × 𝑵
86 85 fovcl A 𝑵 × 𝑵 B 𝑵 × 𝑵 A 𝑝𝑸 B 𝑵 × 𝑵
87 27 33 86 syl2anc A 𝑸 B 𝑸 C 𝑸 A 𝑝𝑸 B 𝑵 × 𝑵
88 85 fovcl A 𝑵 × 𝑵 C 𝑵 × 𝑵 A 𝑝𝑸 C 𝑵 × 𝑵
89 27 37 88 syl2anc A 𝑸 B 𝑸 C 𝑸 A 𝑝𝑸 C 𝑵 × 𝑵
90 addpqf + 𝑝𝑸 : 𝑵 × 𝑵 × 𝑵 × 𝑵 𝑵 × 𝑵
91 90 fovcl A 𝑝𝑸 B 𝑵 × 𝑵 A 𝑝𝑸 C 𝑵 × 𝑵 A 𝑝𝑸 B + 𝑝𝑸 A 𝑝𝑸 C 𝑵 × 𝑵
92 87 89 91 syl2anc A 𝑸 B 𝑸 C 𝑸 A 𝑝𝑸 B + 𝑝𝑸 A 𝑝𝑸 C 𝑵 × 𝑵
93 90 fovcl B 𝑵 × 𝑵 C 𝑵 × 𝑵 B + 𝑝𝑸 C 𝑵 × 𝑵
94 33 37 93 syl2anc A 𝑸 B 𝑸 C 𝑸 B + 𝑝𝑸 C 𝑵 × 𝑵
95 85 fovcl A 𝑵 × 𝑵 B + 𝑝𝑸 C 𝑵 × 𝑵 A 𝑝𝑸 B + 𝑝𝑸 C 𝑵 × 𝑵
96 27 94 95 syl2anc A 𝑸 B 𝑸 C 𝑸 A 𝑝𝑸 B + 𝑝𝑸 C 𝑵 × 𝑵
97 nqereq A 𝑝𝑸 B + 𝑝𝑸 A 𝑝𝑸 C 𝑵 × 𝑵 A 𝑝𝑸 B + 𝑝𝑸 C 𝑵 × 𝑵 A 𝑝𝑸 B + 𝑝𝑸 A 𝑝𝑸 C ~ 𝑸 A 𝑝𝑸 B + 𝑝𝑸 C / 𝑸 A 𝑝𝑸 B + 𝑝𝑸 A 𝑝𝑸 C = / 𝑸 A 𝑝𝑸 B + 𝑝𝑸 C
98 92 96 97 syl2anc A 𝑸 B 𝑸 C 𝑸 A 𝑝𝑸 B + 𝑝𝑸 A 𝑝𝑸 C ~ 𝑸 A 𝑝𝑸 B + 𝑝𝑸 C / 𝑸 A 𝑝𝑸 B + 𝑝𝑸 A 𝑝𝑸 C = / 𝑸 A 𝑝𝑸 B + 𝑝𝑸 C
99 84 98 mpbid A 𝑸 B 𝑸 C 𝑸 / 𝑸 A 𝑝𝑸 B + 𝑝𝑸 A 𝑝𝑸 C = / 𝑸 A 𝑝𝑸 B + 𝑝𝑸 C
100 99 eqcomd A 𝑸 B 𝑸 C 𝑸 / 𝑸 A 𝑝𝑸 B + 𝑝𝑸 C = / 𝑸 A 𝑝𝑸 B + 𝑝𝑸 A 𝑝𝑸 C
101 mulerpq / 𝑸 A 𝑸 / 𝑸 B + 𝑝𝑸 C = / 𝑸 A 𝑝𝑸 B + 𝑝𝑸 C
102 adderpq / 𝑸 A 𝑝𝑸 B + 𝑸 / 𝑸 A 𝑝𝑸 C = / 𝑸 A 𝑝𝑸 B + 𝑝𝑸 A 𝑝𝑸 C
103 100 101 102 3eqtr4g A 𝑸 B 𝑸 C 𝑸 / 𝑸 A 𝑸 / 𝑸 B + 𝑝𝑸 C = / 𝑸 A 𝑝𝑸 B + 𝑸 / 𝑸 A 𝑝𝑸 C
104 nqerid A 𝑸 / 𝑸 A = A
105 104 eqcomd A 𝑸 A = / 𝑸 A
106 105 3ad2ant1 A 𝑸 B 𝑸 C 𝑸 A = / 𝑸 A
107 addpqnq B 𝑸 C 𝑸 B + 𝑸 C = / 𝑸 B + 𝑝𝑸 C
108 107 3adant1 A 𝑸 B 𝑸 C 𝑸 B + 𝑸 C = / 𝑸 B + 𝑝𝑸 C
109 106 108 oveq12d A 𝑸 B 𝑸 C 𝑸 A 𝑸 B + 𝑸 C = / 𝑸 A 𝑸 / 𝑸 B + 𝑝𝑸 C
110 mulpqnq A 𝑸 B 𝑸 A 𝑸 B = / 𝑸 A 𝑝𝑸 B
111 110 3adant3 A 𝑸 B 𝑸 C 𝑸 A 𝑸 B = / 𝑸 A 𝑝𝑸 B
112 mulpqnq A 𝑸 C 𝑸 A 𝑸 C = / 𝑸 A 𝑝𝑸 C
113 112 3adant2 A 𝑸 B 𝑸 C 𝑸 A 𝑸 C = / 𝑸 A 𝑝𝑸 C
114 111 113 oveq12d A 𝑸 B 𝑸 C 𝑸 A 𝑸 B + 𝑸 A 𝑸 C = / 𝑸 A 𝑝𝑸 B + 𝑸 / 𝑸 A 𝑝𝑸 C
115 103 109 114 3eqtr4d A 𝑸 B 𝑸 C 𝑸 A 𝑸 B + 𝑸 C = A 𝑸 B + 𝑸 A 𝑸 C
116 addnqf + 𝑸 : 𝑸 × 𝑸 𝑸
117 116 fdmi dom + 𝑸 = 𝑸 × 𝑸
118 0nnq ¬ 𝑸
119 mulnqf 𝑸 : 𝑸 × 𝑸 𝑸
120 119 fdmi dom 𝑸 = 𝑸 × 𝑸
121 117 118 120 ndmovdistr ¬ A 𝑸 B 𝑸 C 𝑸 A 𝑸 B + 𝑸 C = A 𝑸 B + 𝑸 A 𝑸 C
122 115 121 pm2.61i A 𝑸 B + 𝑸 C = A 𝑸 B + 𝑸 A 𝑸 C