Metamath Proof Explorer


Theorem ditg0

Description: Value of the directed integral from a point to itself. (Contributed by Mario Carneiro, 13-Aug-2014)

Ref Expression
Assertion ditg0 A A B dx = 0

Proof

Step Hyp Ref Expression
1 df-ditg A A B dx = if A A A A B dx A A B dx
2 iooid A A =
3 itgeq1 A A = A A B dx = B dx
4 2 3 ax-mp A A B dx = B dx
5 itg0 B dx = 0
6 4 5 eqtri A A B dx = 0
7 6 negeqi A A B dx = 0
8 neg0 0 = 0
9 7 8 eqtri A A B dx = 0
10 ifeq12 A A B dx = 0 A A B dx = 0 if A A A A B dx A A B dx = if A A 0 0
11 6 9 10 mp2an if A A A A B dx A A B dx = if A A 0 0
12 ifid if A A 0 0 = 0
13 11 12 eqtri if A A A A B dx A A B dx = 0
14 1 13 eqtri A A B dx = 0