| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ditgcl.x |  | 
						
							| 2 |  | ditgcl.y |  | 
						
							| 3 |  | ditgcl.a |  | 
						
							| 4 |  | ditgcl.b |  | 
						
							| 5 |  | ditgcl.c |  | 
						
							| 6 |  | ditgcl.i |  | 
						
							| 7 |  | elicc2 |  | 
						
							| 8 | 1 2 7 | syl2anc |  | 
						
							| 9 | 3 8 | mpbid |  | 
						
							| 10 | 9 | simp1d |  | 
						
							| 11 |  | elicc2 |  | 
						
							| 12 | 1 2 11 | syl2anc |  | 
						
							| 13 | 4 12 | mpbid |  | 
						
							| 14 | 13 | simp1d |  | 
						
							| 15 |  | simpr |  | 
						
							| 16 | 15 | ditgpos |  | 
						
							| 17 | 1 | rexrd |  | 
						
							| 18 | 9 | simp2d |  | 
						
							| 19 |  | iooss1 |  | 
						
							| 20 | 17 18 19 | syl2anc |  | 
						
							| 21 | 2 | rexrd |  | 
						
							| 22 | 13 | simp3d |  | 
						
							| 23 |  | iooss2 |  | 
						
							| 24 | 21 22 23 | syl2anc |  | 
						
							| 25 | 20 24 | sstrd |  | 
						
							| 26 | 25 | sselda |  | 
						
							| 27 | 26 5 | syldan |  | 
						
							| 28 |  | ioombl |  | 
						
							| 29 | 28 | a1i |  | 
						
							| 30 | 25 29 5 6 | iblss |  | 
						
							| 31 | 27 30 | itgcl |  | 
						
							| 32 | 31 | adantr |  | 
						
							| 33 | 16 32 | eqeltrd |  | 
						
							| 34 |  | simpr |  | 
						
							| 35 | 14 | adantr |  | 
						
							| 36 | 10 | adantr |  | 
						
							| 37 | 34 35 36 | ditgneg |  | 
						
							| 38 | 13 | simp2d |  | 
						
							| 39 |  | iooss1 |  | 
						
							| 40 | 17 38 39 | syl2anc |  | 
						
							| 41 | 9 | simp3d |  | 
						
							| 42 |  | iooss2 |  | 
						
							| 43 | 21 41 42 | syl2anc |  | 
						
							| 44 | 40 43 | sstrd |  | 
						
							| 45 | 44 | sselda |  | 
						
							| 46 | 45 5 | syldan |  | 
						
							| 47 |  | ioombl |  | 
						
							| 48 | 47 | a1i |  | 
						
							| 49 | 44 48 5 6 | iblss |  | 
						
							| 50 | 46 49 | itgcl |  | 
						
							| 51 | 50 | negcld |  | 
						
							| 52 | 51 | adantr |  | 
						
							| 53 | 37 52 | eqeltrd |  | 
						
							| 54 | 10 14 33 53 | lecasei |  |