Metamath Proof Explorer


Theorem ditgeq1

Description: Equality theorem for the directed integral. (Contributed by Mario Carneiro, 13-Aug-2014)

Ref Expression
Assertion ditgeq1 A = B A C D dx = B C D dx

Proof

Step Hyp Ref Expression
1 breq1 A = B A C B C
2 oveq1 A = B A C = B C
3 itgeq1 A C = B C A C D dx = B C D dx
4 2 3 syl A = B A C D dx = B C D dx
5 oveq2 A = B C A = C B
6 itgeq1 C A = C B C A D dx = C B D dx
7 5 6 syl A = B C A D dx = C B D dx
8 7 negeqd A = B C A D dx = C B D dx
9 1 4 8 ifbieq12d A = B if A C A C D dx C A D dx = if B C B C D dx C B D dx
10 df-ditg A C D dx = if A C A C D dx C A D dx
11 df-ditg B C D dx = if B C B C D dx C B D dx
12 9 10 11 3eqtr4g A = B A C D dx = B C D dx