Metamath Proof Explorer


Theorem ditgeq2

Description: Equality theorem for the directed integral. (Contributed by Mario Carneiro, 13-Aug-2014)

Ref Expression
Assertion ditgeq2 A=BCADdx=CBDdx

Proof

Step Hyp Ref Expression
1 breq2 A=BCACB
2 oveq2 A=BCA=CB
3 itgeq1 CA=CBCADdx=CBDdx
4 2 3 syl A=BCADdx=CBDdx
5 oveq1 A=BAC=BC
6 itgeq1 AC=BCACDdx=BCDdx
7 5 6 syl A=BACDdx=BCDdx
8 7 negeqd A=BACDdx=BCDdx
9 1 4 8 ifbieq12d A=BifCACADdxACDdx=ifCBCBDdxBCDdx
10 df-ditg CADdx=ifCACADdxACDdx
11 df-ditg CBDdx=ifCBCBDdxBCDdx
12 9 10 11 3eqtr4g A=BCADdx=CBDdx