Metamath Proof Explorer


Theorem ditgeq3

Description: Equality theorem for the directed integral. (The domain of the equality here is very rough; for more precise bounds one should decompose it with ditgpos first and use the equality theorems for df-itg .) (Contributed by Mario Carneiro, 13-Aug-2014)

Ref Expression
Assertion ditgeq3 x D = E A B D dx = A B E dx

Proof

Step Hyp Ref Expression
1 ioossre A B
2 ssralv A B x D = E x A B D = E
3 1 2 ax-mp x D = E x A B D = E
4 itgeq2 x A B D = E A B D dx = A B E dx
5 3 4 syl x D = E A B D dx = A B E dx
6 ioossre B A
7 ssralv B A x D = E x B A D = E
8 6 7 ax-mp x D = E x B A D = E
9 itgeq2 x B A D = E B A D dx = B A E dx
10 8 9 syl x D = E B A D dx = B A E dx
11 10 negeqd x D = E B A D dx = B A E dx
12 5 11 ifeq12d x D = E if A B A B D dx B A D dx = if A B A B E dx B A E dx
13 df-ditg A B D dx = if A B A B D dx B A D dx
14 df-ditg A B E dx = if A B A B E dx B A E dx
15 12 13 14 3eqtr4g x D = E A B D dx = A B E dx