Metamath Proof Explorer


Theorem ditgeq3d

Description: Equality theorem for the directed integral. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses ditgeq3d.1 φ A B
ditgeq3d.2 φ x A B D = E
Assertion ditgeq3d φ A B D dx = A B E dx

Proof

Step Hyp Ref Expression
1 ditgeq3d.1 φ A B
2 ditgeq3d.2 φ x A B D = E
3 df-ditg A B D dx = if A B A B D dx B A D dx
4 1 iftrued φ if A B A B D dx B A D dx = A B D dx
5 3 4 syl5eq φ A B D dx = A B D dx
6 2 itgeq2dv φ A B D dx = A B E dx
7 df-ditg A B E dx = if A B A B E dx B A E dx
8 1 iftrued φ if A B A B E dx B A E dx = A B E dx
9 7 8 eqtr2id φ A B E dx = A B E dx
10 5 6 9 3eqtrd φ A B D dx = A B E dx