Metamath Proof Explorer


Theorem ditgeq3dv

Description: Equality theorem for the directed integral. (Contributed by Mario Carneiro, 13-Aug-2014)

Ref Expression
Hypothesis ditgeq3dv.1 φ x D = E
Assertion ditgeq3dv φ A B D dx = A B E dx

Proof

Step Hyp Ref Expression
1 ditgeq3dv.1 φ x D = E
2 1 ralrimiva φ x D = E
3 ditgeq3 x D = E A B D dx = A B E dx
4 2 3 syl φ A B D dx = A B E dx