Metamath Proof Explorer


Theorem ditgeqiooicc

Description: A function F on an open interval, has the same directed integral as its extension G on the closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses ditgeqiooicc.1 G = x A B if x = A R if x = B L F x
ditgeqiooicc.2 φ A
ditgeqiooicc.3 φ B
ditgeqiooicc.4 φ A B
ditgeqiooicc.5 φ F : A B
Assertion ditgeqiooicc φ A B F x dx = A B G x dx

Proof

Step Hyp Ref Expression
1 ditgeqiooicc.1 G = x A B if x = A R if x = B L F x
2 ditgeqiooicc.2 φ A
3 ditgeqiooicc.3 φ B
4 ditgeqiooicc.4 φ A B
5 ditgeqiooicc.5 φ F : A B
6 ioossicc A B A B
7 6 sseli x A B x A B
8 7 adantl φ x A B x A B
9 2 adantr φ x A B A
10 simpr φ x A B x A B
11 9 rexrd φ x A B A *
12 3 adantr φ x A B B
13 12 rexrd φ x A B B *
14 elioo2 A * B * x A B x A < x x < B
15 11 13 14 syl2anc φ x A B x A B x A < x x < B
16 10 15 mpbid φ x A B x A < x x < B
17 16 simp2d φ x A B A < x
18 9 17 gtned φ x A B x A
19 18 neneqd φ x A B ¬ x = A
20 19 iffalsed φ x A B if x = A R if x = B L F x = if x = B L F x
21 16 simp1d φ x A B x
22 16 simp3d φ x A B x < B
23 21 22 ltned φ x A B x B
24 23 neneqd φ x A B ¬ x = B
25 24 iffalsed φ x A B if x = B L F x = F x
26 20 25 eqtrd φ x A B if x = A R if x = B L F x = F x
27 5 ffvelrnda φ x A B F x
28 26 27 eqeltrd φ x A B if x = A R if x = B L F x
29 1 fvmpt2 x A B if x = A R if x = B L F x G x = if x = A R if x = B L F x
30 8 28 29 syl2anc φ x A B G x = if x = A R if x = B L F x
31 30 20 25 3eqtrrd φ x A B F x = G x
32 31 itgeq2dv φ A B F x dx = A B G x dx
33 4 ditgpos φ A B F x dx = A B F x dx
34 4 ditgpos φ A B G x dx = A B G x dx
35 32 33 34 3eqtr4d φ A B F x dx = A B G x dx