Metamath Proof Explorer


Theorem ditgpos

Description: Value of the directed integral in the forward direction. (Contributed by Mario Carneiro, 13-Aug-2014)

Ref Expression
Hypothesis ditgpos.1 φ A B
Assertion ditgpos φ A B C dx = A B C dx

Proof

Step Hyp Ref Expression
1 ditgpos.1 φ A B
2 df-ditg A B C dx = if A B A B C dx B A C dx
3 1 iftrued φ if A B A B C dx B A C dx = A B C dx
4 2 3 syl5eq φ A B C dx = A B C dx