Step |
Hyp |
Ref |
Expression |
1 |
|
ditgsplit.x |
|
2 |
|
ditgsplit.y |
|
3 |
|
ditgsplit.a |
|
4 |
|
ditgsplit.b |
|
5 |
|
ditgsplit.c |
|
6 |
|
ditgsplit.d |
|
7 |
|
ditgsplit.i |
|
8 |
|
elicc2 |
|
9 |
1 2 8
|
syl2anc |
|
10 |
3 9
|
mpbid |
|
11 |
10
|
simp1d |
|
12 |
|
elicc2 |
|
13 |
1 2 12
|
syl2anc |
|
14 |
4 13
|
mpbid |
|
15 |
14
|
simp1d |
|
16 |
11
|
adantr |
|
17 |
|
elicc2 |
|
18 |
1 2 17
|
syl2anc |
|
19 |
5 18
|
mpbid |
|
20 |
19
|
simp1d |
|
21 |
20
|
adantr |
|
22 |
15
|
ad2antrr |
|
23 |
20
|
ad2antrr |
|
24 |
|
biid |
|
25 |
1 2 3 4 5 6 7 24
|
ditgsplitlem |
|
26 |
25
|
adantlr |
|
27 |
|
biid |
|
28 |
1 2 3 5 4 6 7 27
|
ditgsplitlem |
|
29 |
28
|
oveq1d |
|
30 |
1 2 3 5 6 7
|
ditgcl |
|
31 |
1 2 5 4 6 7
|
ditgcl |
|
32 |
1 2 4 5 6 7
|
ditgcl |
|
33 |
30 31 32
|
addassd |
|
34 |
1 2 5 4 6 7
|
ditgswap |
|
35 |
34
|
oveq2d |
|
36 |
31
|
negidd |
|
37 |
35 36
|
eqtrd |
|
38 |
37
|
oveq2d |
|
39 |
30
|
addid1d |
|
40 |
33 38 39
|
3eqtrd |
|
41 |
40
|
ad2antrr |
|
42 |
29 41
|
eqtr2d |
|
43 |
42
|
adantllr |
|
44 |
22 23 26 43
|
lecasei |
|
45 |
40
|
ad2antrr |
|
46 |
|
ancom |
|
47 |
1 2 5 3 4 6 7 46
|
ditgsplitlem |
|
48 |
47
|
oveq2d |
|
49 |
1 2 3 5 6 7
|
ditgswap |
|
50 |
49
|
oveq2d |
|
51 |
30
|
negidd |
|
52 |
50 51
|
eqtrd |
|
53 |
52
|
oveq1d |
|
54 |
1 2 5 3 6 7
|
ditgcl |
|
55 |
1 2 3 4 6 7
|
ditgcl |
|
56 |
30 54 55
|
addassd |
|
57 |
55
|
addid2d |
|
58 |
53 56 57
|
3eqtr3d |
|
59 |
58
|
ad2antrr |
|
60 |
48 59
|
eqtrd |
|
61 |
60
|
oveq1d |
|
62 |
45 61
|
eqtr3d |
|
63 |
16 21 44 62
|
lecasei |
|
64 |
11
|
adantr |
|
65 |
20
|
adantr |
|
66 |
|
biid |
|
67 |
1 2 4 3 5 6 7 66
|
ditgsplitlem |
|
68 |
67
|
oveq2d |
|
69 |
1 2 3 4 6 7
|
ditgswap |
|
70 |
69
|
oveq2d |
|
71 |
55
|
negidd |
|
72 |
70 71
|
eqtrd |
|
73 |
72
|
oveq1d |
|
74 |
1 2 4 3 6 7
|
ditgcl |
|
75 |
55 74 30
|
addassd |
|
76 |
30
|
addid2d |
|
77 |
73 75 76
|
3eqtr3d |
|
78 |
77
|
ad2antrr |
|
79 |
68 78
|
eqtr2d |
|
80 |
15
|
ad2antrr |
|
81 |
20
|
ad2antrr |
|
82 |
|
ancom |
|
83 |
1 2 4 5 3 6 7 82
|
ditgsplitlem |
|
84 |
83
|
oveq1d |
|
85 |
32 54 30
|
addassd |
|
86 |
1 2 5 3 6 7
|
ditgswap |
|
87 |
86
|
oveq2d |
|
88 |
54
|
negidd |
|
89 |
87 88
|
eqtrd |
|
90 |
89
|
oveq2d |
|
91 |
32
|
addid1d |
|
92 |
85 90 91
|
3eqtrd |
|
93 |
92
|
ad2antrr |
|
94 |
84 93
|
eqtr2d |
|
95 |
94
|
oveq2d |
|
96 |
77
|
ad2antrr |
|
97 |
95 96
|
eqtr2d |
|
98 |
97
|
adantllr |
|
99 |
|
ancom |
|
100 |
1 2 5 4 3 6 7 99
|
ditgsplitlem |
|
101 |
100
|
oveq1d |
|
102 |
31 74 55
|
addassd |
|
103 |
1 2 4 3 6 7
|
ditgswap |
|
104 |
103
|
oveq2d |
|
105 |
74
|
negidd |
|
106 |
104 105
|
eqtrd |
|
107 |
106
|
oveq2d |
|
108 |
31
|
addid1d |
|
109 |
102 107 108
|
3eqtrd |
|
110 |
109
|
ad2antrr |
|
111 |
101 110
|
eqtr2d |
|
112 |
111
|
oveq2d |
|
113 |
58
|
ad2antrr |
|
114 |
112 113
|
eqtr2d |
|
115 |
114
|
oveq1d |
|
116 |
40
|
ad2antrr |
|
117 |
115 116
|
eqtr2d |
|
118 |
117
|
adantlr |
|
119 |
80 81 98 118
|
lecasei |
|
120 |
64 65 79 119
|
lecasei |
|
121 |
11 15 63 120
|
lecasei |
|