Step |
Hyp |
Ref |
Expression |
1 |
|
ditgcl.x |
|
2 |
|
ditgcl.y |
|
3 |
|
ditgcl.a |
|
4 |
|
ditgcl.b |
|
5 |
|
ditgcl.c |
|
6 |
|
ditgcl.i |
|
7 |
|
elicc2 |
|
8 |
1 2 7
|
syl2anc |
|
9 |
3 8
|
mpbid |
|
10 |
9
|
simp1d |
|
11 |
|
elicc2 |
|
12 |
1 2 11
|
syl2anc |
|
13 |
4 12
|
mpbid |
|
14 |
13
|
simp1d |
|
15 |
|
simpr |
|
16 |
10
|
adantr |
|
17 |
14
|
adantr |
|
18 |
15 16 17
|
ditgneg |
|
19 |
15
|
ditgpos |
|
20 |
19
|
negeqd |
|
21 |
18 20
|
eqtr4d |
|
22 |
1
|
rexrd |
|
23 |
13
|
simp2d |
|
24 |
|
iooss1 |
|
25 |
22 23 24
|
syl2anc |
|
26 |
2
|
rexrd |
|
27 |
9
|
simp3d |
|
28 |
|
iooss2 |
|
29 |
26 27 28
|
syl2anc |
|
30 |
25 29
|
sstrd |
|
31 |
30
|
sselda |
|
32 |
|
iblmbf |
|
33 |
6 32
|
syl |
|
34 |
33 5
|
mbfmptcl |
|
35 |
31 34
|
syldan |
|
36 |
|
ioombl |
|
37 |
36
|
a1i |
|
38 |
30 37 5 6
|
iblss |
|
39 |
35 38
|
itgcl |
|
40 |
39
|
adantr |
|
41 |
40
|
negnegd |
|
42 |
|
simpr |
|
43 |
14
|
adantr |
|
44 |
10
|
adantr |
|
45 |
42 43 44
|
ditgneg |
|
46 |
45
|
negeqd |
|
47 |
42
|
ditgpos |
|
48 |
41 46 47
|
3eqtr4rd |
|
49 |
10 14 21 48
|
lecasei |
|