| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ditgcl.x |  | 
						
							| 2 |  | ditgcl.y |  | 
						
							| 3 |  | ditgcl.a |  | 
						
							| 4 |  | ditgcl.b |  | 
						
							| 5 |  | ditgcl.c |  | 
						
							| 6 |  | ditgcl.i |  | 
						
							| 7 |  | elicc2 |  | 
						
							| 8 | 1 2 7 | syl2anc |  | 
						
							| 9 | 3 8 | mpbid |  | 
						
							| 10 | 9 | simp1d |  | 
						
							| 11 |  | elicc2 |  | 
						
							| 12 | 1 2 11 | syl2anc |  | 
						
							| 13 | 4 12 | mpbid |  | 
						
							| 14 | 13 | simp1d |  | 
						
							| 15 |  | simpr |  | 
						
							| 16 | 10 | adantr |  | 
						
							| 17 | 14 | adantr |  | 
						
							| 18 | 15 16 17 | ditgneg |  | 
						
							| 19 | 15 | ditgpos |  | 
						
							| 20 | 19 | negeqd |  | 
						
							| 21 | 18 20 | eqtr4d |  | 
						
							| 22 | 1 | rexrd |  | 
						
							| 23 | 13 | simp2d |  | 
						
							| 24 |  | iooss1 |  | 
						
							| 25 | 22 23 24 | syl2anc |  | 
						
							| 26 | 2 | rexrd |  | 
						
							| 27 | 9 | simp3d |  | 
						
							| 28 |  | iooss2 |  | 
						
							| 29 | 26 27 28 | syl2anc |  | 
						
							| 30 | 25 29 | sstrd |  | 
						
							| 31 | 30 | sselda |  | 
						
							| 32 |  | iblmbf |  | 
						
							| 33 | 6 32 | syl |  | 
						
							| 34 | 33 5 | mbfmptcl |  | 
						
							| 35 | 31 34 | syldan |  | 
						
							| 36 |  | ioombl |  | 
						
							| 37 | 36 | a1i |  | 
						
							| 38 | 30 37 5 6 | iblss |  | 
						
							| 39 | 35 38 | itgcl |  | 
						
							| 40 | 39 | adantr |  | 
						
							| 41 | 40 | negnegd |  | 
						
							| 42 |  | simpr |  | 
						
							| 43 | 14 | adantr |  | 
						
							| 44 | 10 | adantr |  | 
						
							| 45 | 42 43 44 | ditgneg |  | 
						
							| 46 | 45 | negeqd |  | 
						
							| 47 | 42 | ditgpos |  | 
						
							| 48 | 41 46 47 | 3eqtr4rd |  | 
						
							| 49 | 10 14 21 48 | lecasei |  |