Metamath Proof Explorer


Theorem div11

Description: One-to-one relationship for division. (Contributed by NM, 20-Apr-2006) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion div11 A B C C 0 A C = B C A = B

Proof

Step Hyp Ref Expression
1 simp1 A B C C 0 A
2 simp3l A B C C 0 C
3 simp3r A B C C 0 C 0
4 divcl A C C 0 A C
5 1 2 3 4 syl3anc A B C C 0 A C
6 simp2 A B C C 0 B
7 divcl B C C 0 B C
8 6 2 3 7 syl3anc A B C C 0 B C
9 5 8 2 3 mulcand A B C C 0 C A C = C B C A C = B C
10 divcan2 A C C 0 C A C = A
11 1 2 3 10 syl3anc A B C C 0 C A C = A
12 divcan2 B C C 0 C B C = B
13 6 2 3 12 syl3anc A B C C 0 C B C = B
14 11 13 eqeq12d A B C C 0 C A C = C B C A = B
15 9 14 bitr3d A B C C 0 A C = B C A = B