Metamath Proof Explorer


Theorem div11d

Description: One-to-one relationship for division. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses div1d.1 φ A
divcld.2 φ B
divmuld.3 φ C
divassd.4 φ C 0
div11d.5 φ A C = B C
Assertion div11d φ A = B

Proof

Step Hyp Ref Expression
1 div1d.1 φ A
2 divcld.2 φ B
3 divmuld.3 φ C
4 divassd.4 φ C 0
5 div11d.5 φ A C = B C
6 div11 A B C C 0 A C = B C A = B
7 1 2 3 4 6 syl112anc φ A C = B C A = B
8 5 7 mpbid φ A = B