Metamath Proof Explorer


Theorem div11i

Description: One-to-one relationship for division. (Contributed by NM, 20-Aug-2001)

Ref Expression
Hypotheses divclz.1 A
divclz.2 B
divmulz.3 C
divass.4 C 0
Assertion div11i A C = B C A = B

Proof

Step Hyp Ref Expression
1 divclz.1 A
2 divclz.2 B
3 divmulz.3 C
4 divass.4 C 0
5 3 4 pm3.2i C C 0
6 div11 A B C C 0 A C = B C A = B
7 1 2 5 6 mp3an A C = B C A = B