Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
div12
Next ⟩
divmulass
Metamath Proof Explorer
Ascii
Unicode
Theorem
div12
Description:
A commutative/associative law for division.
(Contributed by
NM
, 30-Apr-2005)
Ref
Expression
Assertion
div12
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
→
A
⁢
B
C
=
B
⁢
A
C
Proof
Step
Hyp
Ref
Expression
1
divcl
⊢
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
→
B
C
∈
ℂ
2
1
3expb
⊢
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
→
B
C
∈
ℂ
3
mulcom
⊢
A
∈
ℂ
∧
B
C
∈
ℂ
→
A
⁢
B
C
=
B
C
⁢
A
4
2
3
sylan2
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
→
A
⁢
B
C
=
B
C
⁢
A
5
4
3impb
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
→
A
⁢
B
C
=
B
C
⁢
A
6
div13
⊢
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
∧
A
∈
ℂ
→
B
C
⁢
A
=
A
C
⁢
B
7
6
3comr
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
→
B
C
⁢
A
=
A
C
⁢
B
8
divcl
⊢
A
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
→
A
C
∈
ℂ
9
8
3expb
⊢
A
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
→
A
C
∈
ℂ
10
mulcom
⊢
A
C
∈
ℂ
∧
B
∈
ℂ
→
A
C
⁢
B
=
B
⁢
A
C
11
9
10
stoic3
⊢
A
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
∧
B
∈
ℂ
→
A
C
⁢
B
=
B
⁢
A
C
12
11
3com23
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
→
A
C
⁢
B
=
B
⁢
A
C
13
5
7
12
3eqtrd
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
→
A
⁢
B
C
=
B
⁢
A
C