Metamath Proof Explorer


Theorem div12

Description: A commutative/associative law for division. (Contributed by NM, 30-Apr-2005)

Ref Expression
Assertion div12 A B C C 0 A B C = B A C

Proof

Step Hyp Ref Expression
1 divcl B C C 0 B C
2 1 3expb B C C 0 B C
3 mulcom A B C A B C = B C A
4 2 3 sylan2 A B C C 0 A B C = B C A
5 4 3impb A B C C 0 A B C = B C A
6 div13 B C C 0 A B C A = A C B
7 6 3comr A B C C 0 B C A = A C B
8 divcl A C C 0 A C
9 8 3expb A C C 0 A C
10 mulcom A C B A C B = B A C
11 9 10 stoic3 A C C 0 B A C B = B A C
12 11 3com23 A B C C 0 A C B = B A C
13 5 7 12 3eqtrd A B C C 0 A B C = B A C