Metamath Proof Explorer
Description: A commutative/associative law for division. (Contributed by Mario
Carneiro, 27-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
div1d.1 |
|
|
|
divcld.2 |
|
|
|
divmuld.3 |
|
|
|
divassd.4 |
|
|
Assertion |
div12d |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
div1d.1 |
|
2 |
|
divcld.2 |
|
3 |
|
divmuld.3 |
|
4 |
|
divassd.4 |
|
5 |
|
div12 |
|
6 |
1 2 3 4 5
|
syl112anc |
|