Metamath Proof Explorer


Theorem div13

Description: A commutative/associative law for division. (Contributed by NM, 22-Apr-2005)

Ref Expression
Assertion div13 A B B 0 C A B C = C B A

Proof

Step Hyp Ref Expression
1 mulcom A C A C = C A
2 1 oveq1d A C A C B = C A B
3 2 3adant2 A B B 0 C A C B = C A B
4 div23 A C B B 0 A C B = A B C
5 4 3com23 A B B 0 C A C B = A B C
6 div23 C A B B 0 C A B = C B A
7 6 3coml A B B 0 C C A B = C B A
8 3 5 7 3eqtr3d A B B 0 C A B C = C B A