Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
div13
Next ⟩
div12
Metamath Proof Explorer
Ascii
Unicode
Theorem
div13
Description:
A commutative/associative law for division.
(Contributed by
NM
, 22-Apr-2005)
Ref
Expression
Assertion
div13
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
→
A
B
⁢
C
=
C
B
⁢
A
Proof
Step
Hyp
Ref
Expression
1
mulcom
⊢
A
∈
ℂ
∧
C
∈
ℂ
→
A
⁢
C
=
C
⁢
A
2
1
oveq1d
⊢
A
∈
ℂ
∧
C
∈
ℂ
→
A
⁢
C
B
=
C
⁢
A
B
3
2
3adant2
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
→
A
⁢
C
B
=
C
⁢
A
B
4
div23
⊢
A
∈
ℂ
∧
C
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
A
⁢
C
B
=
A
B
⁢
C
5
4
3com23
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
→
A
⁢
C
B
=
A
B
⁢
C
6
div23
⊢
C
∈
ℂ
∧
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
C
⁢
A
B
=
C
B
⁢
A
7
6
3coml
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
→
C
⁢
A
B
=
C
B
⁢
A
8
3
5
7
3eqtr3d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
→
A
B
⁢
C
=
C
B
⁢
A