Metamath Proof Explorer


Theorem div23

Description: A commutative/associative law for division. (Contributed by NM, 2-Aug-2004)

Ref Expression
Assertion div23 A B C C 0 A B C = A C B

Proof

Step Hyp Ref Expression
1 mulcom A B A B = B A
2 1 oveq1d A B A B C = B A C
3 2 3adant3 A B C C 0 A B C = B A C
4 divass B A C C 0 B A C = B A C
5 4 3com12 A B C C 0 B A C = B A C
6 simp2 A B C C 0 B
7 divcl A C C 0 A C
8 7 3expb A C C 0 A C
9 8 3adant2 A B C C 0 A C
10 6 9 mulcomd A B C C 0 B A C = A C B
11 3 5 10 3eqtrd A B C C 0 A B C = A C B