Metamath Proof Explorer


Theorem div23i

Description: A commutative/associative law for division. (Contributed by NM, 3-Sep-1999)

Ref Expression
Hypotheses divclz.1 A
divclz.2 B
divmulz.3 C
divass.4 C 0
Assertion div23i A B C = A C B

Proof

Step Hyp Ref Expression
1 divclz.1 A
2 divclz.2 B
3 divmulz.3 C
4 divass.4 C 0
5 3 4 pm3.2i C C 0
6 div23 A B C C 0 A B C = A C B
7 1 2 5 6 mp3an A B C = A C B