Metamath Proof Explorer


Theorem div2neg

Description: Quotient of two negatives. (Contributed by Paul Chapman, 10-Nov-2012)

Ref Expression
Assertion div2neg A B B 0 A B = A B

Proof

Step Hyp Ref Expression
1 negcl B B
2 1 3ad2ant2 A B B 0 B
3 simp1 A B B 0 A
4 simp2 A B B 0 B
5 simp3 A B B 0 B 0
6 div12 B A B B 0 B A B = A B B
7 2 3 4 5 6 syl112anc A B B 0 B A B = A B B
8 divneg B B B 0 B B = B B
9 4 8 syld3an1 A B B 0 B B = B B
10 divid B B 0 B B = 1
11 10 3adant1 A B B 0 B B = 1
12 11 negeqd A B B 0 B B = 1
13 9 12 eqtr3d A B B 0 B B = 1
14 13 oveq2d A B B 0 A B B = A -1
15 ax-1cn 1
16 15 negcli 1
17 mulcom A 1 A -1 = -1 A
18 16 17 mpan2 A A -1 = -1 A
19 mulm1 A -1 A = A
20 18 19 eqtrd A A -1 = A
21 20 3ad2ant1 A B B 0 A -1 = A
22 14 21 eqtrd A B B 0 A B B = A
23 7 22 eqtrd A B B 0 B A B = A
24 negcl A A
25 24 3ad2ant1 A B B 0 A
26 divcl A B B 0 A B
27 negeq0 B B = 0 B = 0
28 27 necon3bid B B 0 B 0
29 28 biimpa B B 0 B 0
30 29 3adant1 A B B 0 B 0
31 divmul A A B B B 0 A B = A B B A B = A
32 25 26 2 30 31 syl112anc A B B 0 A B = A B B A B = A
33 23 32 mpbird A B B 0 A B = A B