Metamath Proof Explorer


Theorem div2sub

Description: Swap the order of subtraction in a division. (Contributed by Scott Fenton, 24-Jun-2013)

Ref Expression
Assertion div2sub A B C D C D A B C D = B A D C

Proof

Step Hyp Ref Expression
1 subcl A B A B
2 subcl C D C D
3 2 3adant3 C D C D C D
4 subeq0 C D C D = 0 C = D
5 4 necon3bid C D C D 0 C D
6 5 biimp3ar C D C D C D 0
7 3 6 jca C D C D C D C D 0
8 div2neg A B C D C D 0 A B C D = A B C D
9 8 3expb A B C D C D 0 A B C D = A B C D
10 1 7 9 syl2an A B C D C D A B C D = A B C D
11 negsubdi2 A B A B = B A
12 negsubdi2 C D C D = D C
13 12 3adant3 C D C D C D = D C
14 11 13 oveqan12d A B C D C D A B C D = B A D C
15 10 14 eqtr3d A B C D C D A B C D = B A D C