Metamath Proof Explorer


Theorem div2subd

Description: Swap subtrahend and minuend inside the numerator and denominator of a fraction. Deduction form of div2sub . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses div2subd.1 φ A
div2subd.2 φ B
div2subd.3 φ C
div2subd.4 φ D
div2subd.5 φ C D
Assertion div2subd φ A B C D = B A D C

Proof

Step Hyp Ref Expression
1 div2subd.1 φ A
2 div2subd.2 φ B
3 div2subd.3 φ C
4 div2subd.4 φ D
5 div2subd.5 φ C D
6 div2sub A B C D C D A B C D = B A D C
7 1 2 3 4 5 6 syl23anc φ A B C D = B A D C