Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
div2subd
Metamath Proof Explorer
Description: Swap subtrahend and minuend inside the numerator and denominator of a
fraction. Deduction form of div2sub . (Contributed by David Moews , 28-Feb-2017)
Ref
Expression
Hypotheses
div2subd.1
⊢ φ → A ∈ ℂ
div2subd.2
⊢ φ → B ∈ ℂ
div2subd.3
⊢ φ → C ∈ ℂ
div2subd.4
⊢ φ → D ∈ ℂ
div2subd.5
⊢ φ → C ≠ D
Assertion
div2subd
⊢ φ → A − B C − D = B − A D − C
Proof
Step
Hyp
Ref
Expression
1
div2subd.1
⊢ φ → A ∈ ℂ
2
div2subd.2
⊢ φ → B ∈ ℂ
3
div2subd.3
⊢ φ → C ∈ ℂ
4
div2subd.4
⊢ φ → D ∈ ℂ
5
div2subd.5
⊢ φ → C ≠ D
6
div2sub
⊢ A ∈ ℂ ∧ B ∈ ℂ ∧ C ∈ ℂ ∧ D ∈ ℂ ∧ C ≠ D → A − B C − D = B − A D − C
7
1 2 3 4 5 6
syl23anc
⊢ φ → A − B C − D = B − A D − C