Metamath Proof Explorer


Theorem div32d

Description: A commutative/associative law for division. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses div1d.1 φ A
divcld.2 φ B
divmuld.3 φ C
divmuld.4 φ B 0
Assertion div32d φ A B C = A C B

Proof

Step Hyp Ref Expression
1 div1d.1 φ A
2 divcld.2 φ B
3 divmuld.3 φ C
4 divmuld.4 φ B 0
5 div32 A B B 0 C A B C = A C B
6 1 2 4 3 5 syl121anc φ A B C = A C B